关键词
基于迁移学习和改进Faster-RCNN遥感影像飞机目标检测
作者: 周绍鸿     方新建     刘鑫怡     张潆丹     严盛   来源: 机电工程技术 年份: 2024 文献类型 : 期刊 关键词: 遥感影像   目标检测   RCNN   深度学习   Faster   迁移学习  
描述: 为了提高遥感影像飞机目标检测的准确性和泛化能力,需要解决背景复杂、尺度多变、目标密集、飞机朝向不确定和特征不明显等问题。但现阶段训练数据量有限,初始训练需要消耗大量算力和时间,容易出现过拟合现象。因此,需要优化模型结构和训练过程。针对上述问题,首先引入一种迁移学习的策略,在Faster-RCNN模型训练之前,加载MS COCO数据集预先训练好的权重,使模型快速收敛,节约了大量的训练时间。然后以ResNet50替代原Faster-RCNN的VGG16特征提取网络,更好地利用深层次的语义信息,在此基础上结合FPN网络,并对原Faster-RCNN的9种锚框增加为15种锚框,通过融合多尺度特征图以获得更丰富的特征表示,从而提高网络检测和定位目标的能力。以RSOD-Dataset数据集为例进行飞机目标检测实验,同时比较不同检测算法的性能;再以NWPU VHR-10数据集验证模型的泛化性和稳定性,实验结果表明:改进的Faster-RCNN在RSOD-Dataset数据集上的精确率为97.54%;在NWPU VHR-10数据集上的精确率为98.27%。通过迁移学习和改进Faster-RCNN的网络结构,可以实现在数据量较少的情况下高精度目标检测,且泛化能力较强,所提方法可以利用于其他目标检测和识别,具有较好的推广意义。
基于Transformer的飞机状态预测
作者: 王经纬     高艳鹍     宋澣兴     刘一非   来源: 计算机工程与设计 年份: 2024 文献类型 : 期刊 关键词: 深度学习   状态分类   气动力建模   多任务   大迎角   非定常气动力   时序预测  
描述: 在非定常气动力下,为防止飞机进入危险状态,通过建模进行状态预测,是保障飞行安全的重要手段,传统方法建模过程复杂、工程化难度大且普适性不强。为更好解决大迎角下飞行状态预测,使用基于深度学习的时序序列
基于SW-YOLO模型的航空发动机叶片损伤实时检测
作者: 何宇豪     曹学国     刘信良     蒋浩坤     王静秋   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   实时检测   叶片损伤   深度学习   目标检测   孔探检测  
描述: 孔探检测技术是航空发动机叶片损伤检测的主要手段,但目前依赖人工操作,耗时耗力。本文提出了一个孔探视频检测的SW-YOLO模型,该模型包括输入端、主干网络、颈部网络、头部网络4个模块。首先,在主干网络加入了空间通道注意力模块(Spatial Channel-Convolutional Block Attention Module,SC-CBAM),有效避免位置信息丢失,提高目标边界回归能力,相较于YOLOv5,其平均精度均值■@0.5提高了5.4%。其次,在颈部网络对特征金字塔网络(Feature Pyramid Network,FPN)进行了改进,通过融合低层特征,扩大了模型感受野,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R-CNN,SSD模型的对比实验,结果表明SW-YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢     肖洪     吴丁毅   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFFYOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷
不确定环境下的航空发动机装配线适应性调度方法
作者: 王怡琳     刘鹃     乔非     张家谔   来源: 控制与决策 年份: 2024 文献类型 : 期刊 关键词: 调度规则   航空发动机装配   适应性调度   深度学习   扰动识别   门控循环神经网络  
描述: 航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等.针对不确定环境下的航空发动机装配线的调度问题,提出一种基于门控循环神经网络(GRU)的适应性调度方法.该调度方法包含扰动识别和调度规则调整两个部分:扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐近型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案.最后,以某航空发动机装配线为研究案例,对所提出适应性调度方法进行验证分析.对比实验结果表明,所提出方法能够有效提升装配线的设备利用率、日均生产率等性能.
基于迁移学习的民航发动机小样本故障诊断
作者: 付松   钟诗胜   林琳   张永健   来源: 计算机集成制造系统 年份: 2020 文献类型 : 期刊 关键词: 民航发动机   支持向量机   小样本   深度自编码器   故障诊断   迁移学习  
描述: 为解决民航发动机故障诊断面临的故障样本不足问题,提出了一种基于深度自动编码器(deep auto-encoder, DAE)迁移学习的小样本故障诊断方法。在该方法中,首先利用大量的正常样本对DAE
改进的Kohonen网络在航空发动机分类故障诊断中的应用
作者: 郑波   马昕   来源: 航空发动机 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   自适应检测响应   故障诊断   自适应继承   PSO算法   Kohonen网络  
描述: 针对传统Kohonen网络对未知样本识别时的不可辨识性和分类结果不惟一性问题,利用改进的Kohonen网络对航空发动机进行分类故障诊断,并利用混合粒子群优化算法对网络连接权值进行优化,以提高
基于云模型SDG的航空发动机多工况故障诊断方法
作者: 张振良   何荣荣   张鉴靓   来源: 航空发动机 年份: 2022 文献类型 : 期刊 关键词: 多工况   航空发动机   故障诊断   故障传播   气源系统   符号有向图   云模型  
描述: 针对航空发动机的故障寻源以及故障传播问题,提出了基于云模型符号有向图(SDG)的发动机多工况故障诊断方法。在SDG模型的基础上根据发动机结构进行模块化以便于推理,应用故障关联矩阵进行相容通路的推理
EMD-AR和GRNN算法下的航空液压泵多模态故障诊断分析
作者: 郭文军   张自来   陈丽君   来源: 液压与气动 年份: 2022 文献类型 : 期刊 关键词: AR   多模态   故障诊断   液压泵   神经网络   EMD  
描述: 针对新一代飞机高综合化、高复杂度和高耦合性导致的传统推理故障诊断策略难以满足现代维修保障需求的问题,开展基于广义回归神经网络(Generalized Regression Neural
基于图像特征融合的航空装备多属性维修决策方法
作者: 陈银   郝田义   彭寒   来源: 制造业自动化 年份: 2022 文献类型 : 期刊 关键词: 维修决策   故障诊断   图像特征融合   多属性   航空装备   灰色模糊矩阵  
描述: 以保障航空装备运行稳定性,制定科学的航空装备维修方案,提出基于图像特征融合的航空装备多属性维修决策方法。该方法利用主成分分析方法与投影寻踪方法融合航空装备图像后,通过阈值化分割方法得到航空装备
< 1 2 3 ... 32 33 34 35 36
Rss订阅