首页>
根据【关键词:无参考模型,特征提取,卷积神经网络,特征融合,多模态数据,深度学习,网络结构,影像质量评价 】搜索到相关结果 161 条
高分辨率航空遥感图像的建筑物识别
作者:
王玉琴
尤静静
蔡世鑫
来源:
北京测绘
年份:
2023
文献类型 :
期刊
关键词:
遥感图像
RCNN)模型
快速区域卷积神经网络(Faster
建筑物识别
深度学习
描述:
目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出利用深度学习方法中的快速区域卷积神经网络(Faster RCNN)模型对航空遥感图像进行建筑物识别,经验证,利用Faster RCNN模型对航空遥感图像进行建筑物识别其结果可达93.7%的精准率,平均每张图像识别时间为74 ms,证明了Faster RCNN模型应用于航空遥感图像建筑物识别中的有效性及高效性。
基于深度学习的航空铆钉分类及异常情况检测
作者:
夏正洪
何琥
吴建军
魏汝祥
来源:
中国安全生产科学技术
年份:
2023
文献类型 :
期刊
关键词:
召回率
精确率
深度学习
目标检测
航空铆钉
描述:
针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1 种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
基于深度学习的航空发动机磨损部位识别方法
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
描述:
,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的特征提取 以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测
融合注意力和多尺度特征的航空发动机缺陷检测
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
多特征融合的高分辨率遥感影像飞机目标变化检测
作者:
徐俊峰
张保明
余东行
林雨准
郭海涛
来源:
遥感学报
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
卷积神经网络
多特征融合
变化检测
飞机目标
遥感
多元变化检测
描述:
为利用高分辨率遥感影像实现高精度的飞机目标变化检测,提出了一种自适应的多特征融合变化检测与深度学习相结合的方法。首先,通过加权迭代的多元变化检测法获取变化强度图,并结合自适应的直方图统计法自动获取显著的变化与不变化样本;然后,提取多时相影像的光谱、边缘和纹理特征,完成多特征融合的变化检测,并通过形态学处理得到变化图斑;最后,利用训练的NIN(Network in Network)结构的卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。
基于图像识别的航空姿态指引仪故障检测系统
作者:
彭俊榕
魏麟
谭任翔
何峻毅
来源:
仪表技术
年份:
2023
文献类型 :
期刊
关键词:
姿态指引仪
卷积神经网络
维修
故障检测
图像识别
Hough变换
描述:
对于航空姿态指引仪的维修,仅靠人工目视检测效率低下,为了解决该问题,研究出一种基于Hough变换和改进的AlexNet卷积神经网络的图像识别算法。通过分析处理和识别分类指引仪表盘图像的特定区域,及时检测出指引仪倾斜角和俯仰角的指示情况。实验表明,以该算法为核心的故障检测系统,能够较准确地判断指引仪是否存在故障或是否符合维修标准,检出率在90%以上。由于该系统的应用,机务维修人员可以远程诊断航空姿态指引仪的故障,高效完成维修工作。
航空电子设备故障预测特征参数提取方法研究
作者:
陈华坤
章卫国
史静平
何启志
占正勇
来源:
西北工业大学学报
年份:
2017
文献类型 :
期刊
关键词:
故障预测和健康管理
维数估计
支持向量机
特征提取
综合模块化航电系统
极大似法
DC变换器
降噪自编码神经网络
DC
描述:
故障特征提取 是航空电子设备故障预测的关键技术,对于少量测试点的电子设备可以采用小波变换、傅里叶变换、经验模态分解等方法提取故障特征,但是由于航空电子设备属于大规模集成电路,测试点比较多,采用上述方法
基于RDK-ELM的航空发动机控制系统故障诊断
作者:
陈虹潞
黄向华
来源:
航空发动机
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
极限学习机
控制系统
简约改进
故障诊断
深度学习
描述:
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1 种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
面向航空影像下车辆目标的实时检测算法
作者:
杨国亮
许楠
洪志阳
范振
来源:
计算机工程与设计
年份:
2019
文献类型 :
期刊
关键词:
卷积
实时
深度学习
神经网络
车辆检测
航空影像
描述:
为解决自然场景下的通用目标检测框架对航空影像下的小车辆目标检测性能不足的缺陷,提出一种专用于航空影像下的小车辆目标实时检测器,即轻量级尺度公平单卷积检测器(lightweight scale fair single convolution detector,LSFSCD)。相比传统检测方法和基于CNN的通用检测等方法,其架构更加简单,模型更小。该架构减少了误检和错检,实现更高检测精度的同时减少训练时间。通过使用Caffe框架在8g显存GTX1080上对VEDAI和DLR数据集进行实验,其结果验证了所提算法的有效性。
光学遥感图像飞机目标识别算法
作者:
胡楠
李润生
王载武
来源:
影像技术
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
R
CNN
飞机识别
深度学习
Faster
描述:
光学遥感图像中蕴含着大量信息,更新速度非常快。使用人工方法对光学遥感图像进行判读和目标的识别显然早已达不到现代社会各领域的需求。实时、高效地从光学遥感图像中识别出感兴趣目标具有非常重要的意义。本文对基于人工智能的图像飞机识别研究现状进行了总结,方便后续学者研究。