首页
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻动态
全部
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻
首页>
根据【关键词:
无参考模型,特征提取,卷积神经网络,特征融合,多模态数据,深度学习,网络结构,影像质量评价
】搜索到相关结果
161
条
按文献类别分组
期刊
(161)
按栏目分组
期刊
(161)
按年份分组
2023
(36)
2022
(38)
2021
(22)
2020
(13)
2019
(27)
2018
(14)
2017
(11)
按来源分组
遥感学报
(4)
测控技术
(4)
计算机工程
(4)
激光与光电子学进展
(4)
航空动力学报
(4)
信号处理
(3)
航空计算技术
(3)
现代雷达
(3)
润滑与密封
(3)
中国电机工程学报
(3)
计算机应用
(3)
赣南师范大学学报
(2)
电子测试
(2)
测绘科学技术学报
(2)
应用光学
(2)
光学学报
(2)
通讯世界
(2)
Transactions of Nanjing University of Aeronautics and Astronautics
(2)
航空电子技术
(2)
电光与控制
(2)
雷达科学与技术
(1)
北京交通大学学报(社会科学版)
(1)
兵工学报
(1)
现代计算机(专业版)
(1)
空运商务
(1)
智能系统学报
(1)
振动.测试与诊断
(1)
中国图象图形学报
(1)
微型机与应用
(1)
现代电子技术
(1)
关键词
基于二次分解重构策略的航空客流需求预测
作者:
栗慧琳
李洪涛
李智
来源:
计算机应用
年份:
2022
文献类型 :
期刊
关键词:
二次分解重构
多步预测
深度学习
航空客流需求预测
模型匹配
描述:
、深圳宝安国际机场和海口美兰国际机场的航空客流数据作为研究对象进行了
1
步和多步预测实验,实验结果表明,与一次分解集成模型STL-SAAB相比,所提模型的均方根误差(RMSE)提升了14.98
航空发动机外形点云特征分割的训练集构建
作者:
文思扬
周来水
闫杰琼
胡少乾
来源:
机械制造与自动化
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
深度学习
点云分割
训练集
逆向工程
描述:
在航空发动机外形重建过程中,需要将外形点云数据进行分割,获得更小、连贯、具有相同属性点的点云片段,以利于之后点云数据的分类提取。设计一种用于航空发动机外形特征点云分割的深度学习训练数据集的构建方法;分析航空发动机外形的特点,将理论模型与实测数据相结合,构建包含航空发动机外形特征的点云数据训练集。训练集中包括根据航空发动机外形典型特征设计的理论模型离散点云及实际扫描的外形点云数据。
融合注意力和多尺度特征的航空发动机缺陷检测
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
作者:
李浩
王卓健
李哲
陈煊
李园
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
寿命预测
深度学习
预测模型
数据融合
描述:
发动机监测数据进行
特征提取
,构建反映性能退化的健康指标(HI),基于双向长短期记忆(BiLSTM)网络构建DeepAR预测模型,将提取后的HI序列输入到DeepAR模型中,预测模型对HI序列与使用时间
基于改进YOLOv5的轻量化航空目标检测方法
作者:
杨小冈
高凡
卢瑞涛
李维鹏
张涛
曾俊
来源:
信息与控制
年份:
2022
文献类型 :
期刊
关键词:
注意力
通道剪枝
深度学习
目标检测
模型压缩
描述:
,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高
特征提取
能力;其次在深度可分离卷积层增加
1
×
1
的卷积,在减少卷积结构参数
时间域航空电磁激发极化参数三维反演研究
作者:
满开峰
殷长春
刘云鹤
孙思源
熊彬
来源:
地球物理学报
年份:
2023
文献类型 :
期刊
关键词:
Pearson相关约束
激发极化效应
时间域航空电磁
深度学习
3D反演
描述:
时间域航空电磁中心回线(或重叠回线)装置晚期道数据受激电效应影响常出现符号反转现象.这类数据与多个激电参数相关,并且各参数之间灵敏度差异较大,导致反演存在严重的非唯一性.本文提出一种基于Pearson相关性约束和深度学习算法相结合的时间域航空电磁激发极化参数反演策略.该反演策略首先基于深度学习预测时间域航空电磁激电参数,进而给时间常数和频率相关系数一个较小的约束范围后再反演电阻率和极化率,由此大大减少反演的多解性.针对电阻率和极化率的反演,我们采用统计学中Pearson相关系数构建两种物性参数的相关性约束,进一步减少反演多解性.为验证反演策略的有效性,我们对双棱柱模型和拱形模型分别进行反演试算.理论测试结果表明,基于Pearson相关性约束的电阻率和极化率的反演结果比传统的高斯-牛顿反演结果更接近真实模型,而基于深度学习预测时间常数和频率相关系数后的电阻率和极化率反演结果与给定真实时间常数和频率相关系数后的反演结果效果相当.最后,我们对来自澳大利亚的带激电效应的航空电磁实测数据在考虑和不考虑激电效应条件下进行反演,结果表明考虑激电效应的反演无论数据拟合还是地电断面的连续性均得到明显改善.
基于深度学习的航空发动机滑油磨粒检测研究
作者:
侯媛媛
李江红
薛军印
来源:
计算机测量与控制
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
YOLOv3模型
滑油磨粒检测
深度学习
SER算法
描述:
针对滑油中磨粒形状复杂且尺寸大小不一,传统滑油磨粒检测方法存在时效性差、检测尺度小、精度低、非铁磁性磨粒不能检测等缺点;设计了一种基于深度学习的航空发动机滑油磨粒检测方法;基于连续流微流控芯片的滑油图像采样方法,构建滑油图像采样系统;设计图像增强方法,进行图像数据增强消融试验研究,针对YOLOv3模型和Faster RCNN模型进行精度测试,结果表明消融试验后的YOLOv3模型检测能力明显优于Faster RCNN模型;为减少消融后YOLOv3模型的误检率,提出SER算法以优化该模型的推理置信度阈值;研究结果表明滑油磨粒检测方法可解决传统测试中存在的问题,且在0.35的置信度阈值下,YOLOv3模型的检测结果能够达到94.2%的召回率和95.9%的精确度。
基于改进YOLOv5的轻量化航空目标检测方法
作者:
杨小冈
高凡
卢瑞涛
李维鹏
张涛
曾俊
来源:
信息与控制
年份:
2022
文献类型 :
期刊
关键词:
注意力
通道剪枝
深度学习
目标检测
模型压缩
描述:
,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高
特征提取
能力;其次在深度可分离卷积层增加
1
×
1
的卷积,在减少卷积结构参数
基于深度学习的航空发动机磨损部位识别方法
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
描述:
,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的
特征提取
以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测
航空装配领域中命名实体识别的持续学习框架
作者:
刘沛丰
钱璐
赵兴炜
陶波
来源:
浙江大学学报(工学版)
年份:
2023
文献类型 :
期刊
关键词:
航空装配
深度学习
智能制造
命名实体识别
持续学习
描述:
框架在正确率、召回率、F
1
值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
<
1
2
3
...
13
14
15
16
17
>
Rss订阅
订阅地址: