首页>
根据【检索词:LS 】搜索到相关结果 49 条
基于灰色和LSSVM的航空发动机状态预测
作者:
崔建国
高波
蒋丽英
于明月
郑蔚
来源:
计算机工程与设计
年份:
2018
文献类型 :
期刊
关键词:
状态预测
航空发动机
最小二乘支持向量机
排气温度
主燃油泵
灰色模型
描述:
为克服单一模型预测精度较低这一缺陷,提出一种基于灰色模型(grey model,GM)和最小二乘支持向量机(least squares support vector machine,LSSVM)的组合预测方法。通过灰色累加对原始数据序列进行处理,建立灰色预测模型,利用灰色预测模型的预测结果作为输入,原始数据作为输出,训练构建LSSVM预测模型进行预测。选取航空发动机主燃油泵作为具体研究对象,采集排气温度作为其状态预测参数进行状态预测。研究结果表明,相比单一预测模型,灰色最小二乘支持向量机预测精度更高,为航空发动机状态预测提供了一种有效的解决途径。
LSSVM与HMM在航空发动机状态预测中的应用研究
作者:
崔建国
高波
蒋丽英
于明月
郑蔚
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
隐马尔科夫模型
状态预测
航空发动机
最小二乘支持向量机
小波包分解
振动信号
降噪
描述:
传统单一的状态预测方法难以精确预测航空发动机状态的缺陷,而最小二乘支持向量机(LSSVM)具有较强的非线性预测能力和泛化能力,可以有效地对信号进行非线性预测,隐马尔科夫模型(HMM)有利于处理连续的动态信号,能够精确计算出似然度概率。提出一种结合LSSVM与HMM的状态预测方法。利用提升小波函数全阈值降噪法对采集的振动信号进行降噪,采用小波包分解提取有效的特征,选择不同状态下的特征量训练多个HM M模型,并通过此模型对未知信号特征量以及LSSVM预测的特征量进行状态监测,从而预测出发动机未来时刻的状态以及状态的退化趋势。实验结果表明,该方法的预测准确率达到92%以上,能够有效地预测航空发动机的状态情况。
基于LS -SVM的航空器进场飞行时间预测
作者:
李阳
聂党民
温祥西
来源:
航空计算技术
年份:
2018
文献类型 :
期刊
关键词:
LS
预计到达时间
RMSE
SVM
飞行时间预测
描述:
航空器预计到达时刻(ETA)的准确预测是航空器进场排序与调配的基础。基于最小二乘支持向量机方法(LS -SVM),对航空器进场飞行时间进行预测。通过对历史雷达数据进行收集,建立支持向量训练集,使用
多特征分类的PolSAR图像飞机目标检测
作者:
卢晓光
周波
韩萍
韩宾宾
来源:
信号处理
年份:
2019
文献类型 :
期刊
关键词:
特征提取
极化合成孔径雷达
飞机目标检测
SVM分类器
描述:
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM(Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。
基于SMO和RLS的航空电推进永磁电机驱动系统
作者:
王宏喆
甘醇
倪锴
何琪
曲荣海
来源:
航空科学技术
年份:
2023
文献类型 :
期刊
关键词:
递推最小二乘法
滑模观测器
航空电推进驱动系统
永磁同步电机
无位置传感器控制
描述:
针对大功率航空电推进驱动系统高可靠性和轻量化特性的需求,本文提出了一种基于滑模观测器(SMO)和递推最小二乘法(RLS)的多模式无位置传感器控制策略。首先通过SMO对扩展反电动势进行观测,并对转速估算值进行多模式处理,实现了快速、准确地提取出电机的转子位置角及转速等信息;再由RLS对永磁体磁链等参数进行辨识,依据辨识结果对控制器中的相关控制参数进行整定,并对观测器参数进行更新,提高了系统的鲁棒性。本文对300kW的永磁同步电机电推进驱动系统进行了实例仿真,验证了所提方案的有效性。本文所提出的方案可以实现可靠的无位置传感器驱动控制,具有快速的动态性能和较高的鲁棒性,为相关航空电推进驱动系统控制方案的设计和研究提供了参考。
基于Bi-LSTM的航空发动机寿命预测
作者:
万晓凡
徐泽宇
张营
来源:
农业装备与车辆工程
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
寿命预测
优化
过拟合
神经网络
描述:
针对哪种类型神经网络对航空发动机剩余寿命预测结果更为准确的问题,采用对不同神经网络预测结果比较的方法,通过搭建双向长短时记忆网络预测模型的实验,对网络结构进行过拟合优化和对数据进行预处理后代入模型进行计算,再对长短时记忆网络的结果进行比对。结果表明,双向长短时记忆网络预测效果要比长短时记忆网络有更好的预测能力。
基于LSTM的航空发动机电气附件性能预测
作者:
罗贤峰
何宇
刘仲富
余振源
窦宇骁
孙兆荣
来源:
科技创新与应用
年份:
2022
文献类型 :
期刊
关键词:
静态测试
长短期记忆神经网络
性能预测
发动机电气附件
描述:
电气附件是航空发动机重要组成部分,包括电磁活门、作动器、传感器等,其结构复杂,种类庞多,还因振动、疲劳、应力等原因性能衰减,导致信号错误或控制失灵,严重时造成发动机空中停车,直接影响到飞机飞行安全。对此设计开发一套发动机电气附件性能预测系统,通过长短期记忆神经网络(Long Short-Term Memory Network,LSTM)构建基于数据驱动的电气附件静态性能预测模型,通过机器的训练与学习,预测分析电气附件的性能衰减状况,为发动机的维修提供有力的技术支持。
基于LSTM分类器的航空发动机预测性维护模型
作者:
蔺瑞管
王华伟
车畅畅
倪晓梅
熊明兰
来源:
系统工程与电子技术
年份:
2022
文献类型 :
期刊
关键词:
二分类
长短期记忆网络
时间窗
故障预测与健康管理
预测性维护
描述:
利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
基于改进LSTM模型的航空安全预测方法研究
作者:
曾航
张红梅
任博
崔利杰
武江南
来源:
系统工程与电子技术
年份:
2022
文献类型 :
期刊
关键词:
堆叠式
长短期记忆
多步预测
神经网络
航空安全
描述:
精确的航空安全预测是科学开展安全预警的前提。航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度。基于此,提出一种基于改进长短期记忆(long short-term memory, LSTM)模型的航空安全预测新方法。首先基于相关系数热图优选致因指标,再以步进搜索和Adam算法相结合的方式优化LSTM模型超参数,最后以2019年某型运输机事故数据为算例,选取多种常用时序预测模型作为对照。实验结果表明本文所提方法,预测误差较现有方法降低了28%以上,同时具有较好的泛化能力和鲁棒性。
基于LSTM的航空发电机整流电路诊断技术
作者:
陈文杰
崔江
来源:
电机与控制应用
年份:
2023
文献类型 :
期刊
关键词:
整流电路
长短时记忆网络
电励磁双凸极发电机
故障诊断
描述:
整流电路是航空发电机的重要组成部分,存在故障频发且维修困难等问题。为对电励磁双凸极发电机(DSEG)的整流电路进行故障诊断,研究了一种基于长短时记忆(LSTM)网络的故障诊断方法。首先,采集多种故障模式下发电机的三相电枢电流信号。其次,利用不同的信号处理方法处理故障信号以获取故障特征信息。然后,将获得的故障特征数据分为训练和测试样本输入LSTM网络进行故障分类。最后,计算并分析诊断结果。仿真与试验结果表明所提方法具有良好的故障诊断效果。