首页>
根据【关键词:故障诊断,飞行控制盒,神经网络,自适应遗传算法,电气控制盒】搜索到相关结果 502 条
-
飞机液压系统故障诊断
-
作者:
李耀华
王星州
来源:
计算机工程与应用
年份:
2019
文献类型 :
期刊
关键词:
信息熵
熵权法
故障诊断
飞机液压系统
人工蜂群
反向传播(BP)神经网络
-
描述:
为有效诊断飞机液压系统故障,根据液压系统压力信号采用了熵权ABC-BP神经网络的故障诊断模型。模型先提取飞机液压系统压力信号的特征值,根据熵权法计算特征值信息熵,选取熵权值较大的作为神经网络的输入
-
基于信息融合的飞机舱音声信号分析与故障诊断
-
作者:
贾玉琛
程道来
纪林章
姚红宇
仪垂杰
来源:
噪声与振动控制
年份:
2018
文献类型 :
期刊
关键词:
产生式规则
舱音
信息融合
故障诊断
声学
飞机
-
描述:
飞机黑匣子中舱音记录器记录的舱音声信息是分析、诊断飞行事故原因的关键依据之一。以多个典型舱音样本为例,在阐述信息融合原理基础上,构建信息融合三个层次模型,建立典型舱音特征库。开展基于产生式规则的信息融合的飞机舱音声信号的分析与故障,依据舱音二进制诊断树,得到分析诊断结果,为准确掌握飞行事故原因、分析诊断飞行事故、保障航空飞行安全具有一定借鉴作用。
-
Cessna 525飞机刹车系统典型故障分析
-
作者:
王立纲
来源:
西安航空学院学报
年份:
2018
文献类型 :
期刊
关键词:
故障诊断
525
故障分析
刹车系统
Cessna
防滞
-
描述:
了相应的故障诊断优先程序,有助于在排故过程中迅速准确地找到根源,节约时间,提高该飞机整体的运营效率。同时对维护同种机型的其他通航单位也有一定的借鉴意义。
-
飞机液压系统故障诊断
-
作者:
李耀华
王星州
来源:
计算机工程与应用
年份:
2019
文献类型 :
期刊
关键词:
信息熵
熵权法
故障诊断
飞机液压系统
人工蜂群
反向传播(BP)神经网络
-
描述:
为有效诊断飞机液压系统故障,根据液压系统压力信号采用了熵权ABC-BP神经网络的故障诊断模型。模型先提取飞机液压系统压力信号的特征值,根据熵权法计算特征值信息熵,选取熵权值较大的作为神经网络的输入
-
基于集成学习的航空发动机故障诊断方法
-
作者:
徐萌
席泽西
王雍赟
李晓露
来源:
中国民航大学学报
年份:
2019
文献类型 :
期刊
关键词:
集成学习
航空发动机
故障诊断
分类模型
气路参数
数据挖掘
-
描述:
一种两层结构的Stacking集成学习模型,实现航空发动机典型气路故障的智能诊断。仿真实验结果表明,该模型的精确率和召回率相比现有典型模型均可提升约3%~16%,能更好地应用于航空发动机故障诊断。
-
基于复合算法的航空发动机磨损故障诊断
-
作者:
黄帆
李艳军
曹愈远
李依林
来源:
航空计算技术
年份:
2019
文献类型 :
期刊
关键词:
支持向量机
油液分析
航空发动机
故障诊断
相对劣化度
免疫系统
-
描述:
磨损故障诊断的方法。利用SVM拟合数据的概率密度函数,根据磨粒数据的概率分布制定正常、预警和警告的界限值;根据相对劣化度评估,分析各状态参数偏离正常状态的程度;利用人工免疫算法对待测数据进行故障模式识别。通过
-
飞机电缆短路故障分析及机理研究
-
作者:
李红
邓乐武
罗强
张永强
韩杨
来源:
四川电力技术
年份:
2020
文献类型 :
期刊
关键词:
暂态分析
故障诊断
接触电阻
绝缘层
短路
热效应
-
描述:
飞机电缆短路故障分析及机理研究
-
基于迁移学习的民航发动机小样本故障诊断
-
作者:
付松
钟诗胜
林琳
张永健
来源:
计算机集成制造系统
年份:
2020
文献类型 :
期刊
关键词:
民航发动机
支持向量机
小样本
深度自编码器
故障诊断
迁移学习
-
描述:
为解决民航发动机故障诊断面临的故障样本不足问题,提出了一种基于深度自动编码器(deep auto-encoder, DAE)迁移学习的小样本故障诊断方法。在该方法中,首先利用大量的正常样本对DAE
-
基于深度学习的航空传感器故障诊断方法
-
作者:
郑晓飞
郭创
姚斌
冯华鑫
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
信号重构
故障诊断
深度学习
航空传感器
深度置信网络
故障隔离
-
描述:
为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出
-
应用深度核极限学习机的航空发动机部件故障诊断
-
作者:
逄珊
杨欣毅
张勇
韦祥
来源:
推进技术
年份:
2018
文献类型 :
期刊
关键词:
极限学习机
故障诊断
深度神经网络
核方法
涡扇发动机
部件
-
描述:
运用传统单隐层的神经网络进行航空发动机部件故障诊断识别受其浅层结构影响,精度不高,而用深度置信网络(Deep belief network,DBN)等深度学习方法则存在耗时、参数训练复杂的问题。为