首页>
根据【关键词:民航发动机,Wiener过程,剩余寿命预测,非完美维修】搜索到相关结果 76 条
-
基于部件特性图优化的民航发动机性能退化建模
-
作者:
郭庆
黄启廉
陈金亮
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
民航发动机
缩放基准点优化
气路分析
部件级建模
曲面拟合
-
描述:
为了从单元体层级给出民航发动机气路性能退化的理论依据,以CFM56/3发动机为研究对象,首先,在使用特性图缩放法获取部件特性方程的基础之上,优化了风扇通用特性图缩放基准点的选取过程,提出了特性图
-
基于ConvJANET的航空发动机剩余寿命预测及其不确定性量化
-
作者:
苗永浩
李晨辉
石惠芳
林京
来源:
中国科学:技术科学
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
极大似然估计
不确定性量化
卷积循环神经网络
剩余寿命预测
-
描述:
航空发动机技术是衡量一个国家科技水平和工业实力的重要标志,健康状态监测和剩余使用寿命(remaining useful life, RUL)预测技术是航空发动机安全服役、经济运行的重要保障.针对航空发动机RUL预测精度较低、不确定性难以量化的问题,本文提出了一种数据驱动的航空发动机RUL区间预测方法.首先,在ConvJANET框架下构建新的卷积/卷积循环/全连接结构的深度学习模型,逐层提取航空发动机监测数据中的退化特征;其次,利用极大似然思想指导神经网络模型的优化求解,并基于损失函数形式变化的策略训练模型,实现对航空发动机RUL的高精度预测与不确定性量化.将所提出的方法用于分析航空发动机退化数据集,结果表明,对比传统基于蒙特卡洛的方法,本文提出的方法具有更高的RUL预测准确率和更好的置信区间预测性能.
-
航空发动机状态监控和预测性维护应用研究
-
作者:
廖鹏程
李昂
王骁
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
特征提取
深度学习
健康管理
剩余寿命预测
故障预测
-
描述:
为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于
-
基于时空特征的航空发动机剩余使用寿命预测
-
作者:
徐震震
薛林
马凯
杨玉迪
来源:
电子测量技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
深度学习
时间特征
剩余寿命预测
空间特征
-
描述:
航空发动机作为一种高精密机械部件,对飞机性能和可靠性有重要影响。准确的剩余寿命预测可以降低维修成本,减少安全事故的发生。现有的预测方法只关注传感器数据之间的时间关系,忽略了传感器之间的空间关系。本文
-
基于ConvJANET的航空发动机剩余寿命预测及其不确定性量化
-
作者:
苗永浩
李晨辉
石惠芳
林京
来源:
中国科学:技术科学
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
极大似然估计
不确定性量化
卷积循环神经网络
剩余寿命预测
-
描述:
航空发动机技术是衡量一个国家科技水平和工业实力的重要标志,健康状态监测和剩余使用寿命(remaining useful life, RUL)预测技术是航空发动机安全服役、经济运行的重要保障.针对航空发动机RUL预测精度较低、不确定性难以量化的问题,本文提出了一种数据驱动的航空发动机RUL区间预测方法.首先,在ConvJANET框架下构建新的卷积/卷积循环/全连接结构的深度学习模型,逐层提取航空发动机监测数据中的退化特征;其次,利用极大似然思想指导神经网络模型的优化求解,并基于损失函数形式变化的策略训练模型,实现对航空发动机RUL的高精度预测与不确定性量化.将所提出的方法用于分析航空发动机退化数据集,结果表明,对比传统基于蒙特卡洛的方法,本文提出的方法具有更高的RUL预测准确率和更好的置信区间预测性能.
-
航空发动机状态监控和预测性维护应用研究
-
作者:
廖鹏程
李昂
王骁
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
特征提取
深度学习
健康管理
剩余寿命预测
故障预测
-
描述:
为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于
-
基于时空特征的航空发动机剩余使用寿命预测
-
作者:
徐震震
薛林
马凯
杨玉迪
来源:
电子测量技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
深度学习
时间特征
剩余寿命预测
空间特征
-
描述:
航空发动机作为一种高精密机械部件,对飞机性能和可靠性有重要影响。准确的剩余寿命预测可以降低维修成本,减少安全事故的发生。现有的预测方法只关注传感器数据之间的时间关系,忽略了传感器之间的空间关系。本文
-
基于长短期记忆网络与轻梯度提升机的航空发动机大修期内剩余寿命预测
-
作者:
杨硕
高成
来源:
航空发动机
年份:
2024
文献类型 :
期刊
关键词:
长短期记忆网络
航空发动机
组合模型
轻梯度提升机
剩余寿命预测
-
描述:
NASA提供的发动机实测数据集进行了仿真试验,实现了对单个发动机的RUL预测,并与其他6种模型预测结果进行对比,对其预测剩余使用寿命的有效性进行验证。结果表明:LSTM和LightGBM组合模型比其他模型的预测误差显著减小,其4组数据集均方根误差仅为12.45、20.23、12.58、21.75。
-
基于深度学习方法的航空发动机寿命预测模型
-
作者:
郭晓静
贠玉晶
徐晓慧
来源:
振动.测试与诊断
年份:
2024
文献类型 :
期刊
关键词:
注意力机制
长短期记忆网络
航空发动机
剩余寿命预测
协方差分析
-
描述:
(root mean square error,简称RMSE)范围为[4.83,13.66],与卷积神经网络(convolutionneuralnetworks,简称CNN)、LSTM和双向长短期记忆网络
-
基于概率稀疏自注意力的航空发动机剩余寿命预测
-
作者:
王欣
黄佳琪
许雅玺
来源:
科学技术与工程
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
概率稀疏自注意力
剩余寿命预测
-
描述:
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型