基于概率稀疏自注意力的航空发动机剩余寿命预测

日期:2024.12.17 点击数:0

【类型】期刊

【作者】王欣  黄佳琪  许雅玺 

【刊名】科学技术与工程

【关键词】 航空发动机,Transformer,深度学习,概率稀疏自注意力,剩余寿命预测

【摘要】航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。

【年份】2024

【作者单位】中国民用航空飞行学院计算机学院;中国民用航空飞行学院经济与管理学院;

【期号】06

【页码】2424-2433

3 0
Rss订阅