关键词
基于深度学习的智慧航空物流综合服务智能问答方法
作者: 章丰田   来源: 自动化应用 年份: 2024 文献类型 : 期刊 关键词: 综合服务   智能问答   深度学习   航空物流   智慧航空  
描述: 基于深度学习的智慧航空物流综合服务智能问答方法
飞机装配过程错漏装检测技术研究进展
作者: 王振宇     张祥春     严佳     张晓庆     武湛君   来源: 无损检测 年份: 2024 文献类型 : 期刊 关键词: 错漏装   机器视觉   深度学习   无损检测   模板匹配  
描述: 飞机装配过程错漏装检测技术研究进展
作者: 秦子轩     张晓东     白广芝     任先聪   来源: 航空发动机 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   剩余可用寿命   深度学习   多头注意力机制   多尺度卷积双向长短期记忆网络  
描述:
基于CNN-LSTM混合模型的民航非计划事件分析方法
作者: 王捷     周迪     左洪福     陆扬   来源: 计算机与数字工程 年份: 2024 文献类型 : 期刊 关键词: 长短时记忆神经网络   卷积神经网络   深度学习   民航安全   文本分析  
描述: 安全是民航业的核心主题,非计划事件是辨识安全隐患、改善航空安全的重要信息来源。非计划事件的非结构化和数量庞大等特性使得人工分析变得困难且效率低下。为提高非计划事件的分析效率和精度,论文提出了一种基于CNN-LSTM的混合深度神经网络模型,用于民航非计划事件的自动化分析。并与SVM、CNN、LSTM等模型进行比较,在航空公司的事件日志样本数据集上进行训练并做出事件分类结果的判断。实验结果表明,所提出的CNN-LSTM混合模型具有最高的分类准确率,对于不平衡数据样本,具有最稳定的分类性能。
航空装配领域中命名实体识别的持续学习框架
作者: 刘沛丰   钱璐   赵兴炜   陶波   来源: 浙江大学学报(工学版) 年份: 2023 文献类型 : 期刊 关键词: 航空装配   深度学习   智能制造   命名实体识别   持续学习  
描述: 框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
高分辨率航空遥感图像的建筑物识别
作者: 王玉琴   尤静静   蔡世鑫   来源: 北京测绘 年份: 2023 文献类型 : 期刊 关键词: 遥感图像   RCNN)模型   快速区域卷积神经网络(Faster   建筑物识别   深度学习  
描述: 目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出
航空发动机状态监控和预测性维护应用研究
作者: 廖鹏程   李昂   王骁   来源: 测控技术 年份: 2023 文献类型 : 期刊 关键词: 特征提取   深度学习   健康管理   剩余寿命预测   故障预测  
描述: 据进行降噪并预测剩余寿命,通过美国国家航空航天局(NASA)的航空发动机仿真数据集验证了模型能达到91.3%的准确率;采用核主成分分析(KPCA)结合深度置信网络(DBN)的方法建立发动机气路健康监控
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于深度学习的航空发动机磨损部位识别方法
作者: 苗慧慧   曹桂松   孙智君   康玉祥   马佳丽   陈果   来源: 润滑与密封 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   一维卷积残差网络   能谱分析   深度学习   磨损  
描述: 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
基于时空特征的航空发动机剩余使用寿命预测
作者: 徐震震     薛林     马凯     杨玉迪   来源: 电子测量技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   深度学习   时间特征   剩余寿命预测   空间特征  
描述: 提出了一种时空特征融合的网络模型,利用图卷积神经网络和长短时记忆网络分别提取空间特征和时间特征,运用并行结构将时间特征与空间特征融合。在CMAPSS数据集上进行验证,子数据集FD001的RMSE为12.81,Score为252.04,实验结果表明,该方法相对于其他预测方法,预测精度更高。
< 1 2 3 ... 27 28 29 ... 30 31 32
Rss订阅