首页>
根据【关键词:民航,旅客价值,深度学习,多任务学习,价值预测】搜索到相关结果 344 条
-
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
-
作者:
李浩
王卓健
李哲
陈煊
李园
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
寿命预测
深度学习
预测模型
数据融合
-
描述:
针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习对发动机监测数据进行特征提取,构建反映性能退化的健康指标(HI),基于双向长短期记忆(BiLSTM)网络构建DeepAR预测模型,将提取后的HI序列输入到DeepAR模型中,预测模型对HI序列与使用时间的隐含关系进行全局学习,并输出发动机剩余寿命的概率分布参数。利用CMPASS涡扇发动机退化数据集进行实验,验证所提方法的有效性。结果表明,本文所提预测方法同其他方法相比,对监测数据融合的效果更好,预测模型性能提高6.4%,实际剩余寿命基本在95%置信区间内。
-
基于改进YOLOv5的轻量化航空目标检测方法
-
作者:
杨小冈
高凡
卢瑞涛
李维鹏
张涛
曾俊
来源:
信息与控制
年份:
2022
文献类型 :
期刊
关键词:
注意力
通道剪枝
深度学习
目标检测
模型压缩
-
描述:
,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
-
时间域航空电磁激发极化参数三维反演研究
-
作者:
满开峰
殷长春
刘云鹤
孙思源
熊彬
来源:
地球物理学报
年份:
2023
文献类型 :
期刊
关键词:
Pearson相关约束
激发极化效应
时间域航空电磁
深度学习
3D反演
-
描述:
时间域航空电磁中心回线(或重叠回线)装置晚期道数据受激电效应影响常出现符号反转现象.这类数据与多个激电参数相关,并且各参数之间灵敏度差异较大,导致反演存在严重的非唯一性.本文提出一种基于Pearson相关性约束和深度学习算法相结合的时间域航空电磁激发极化参数反演策略.该反演策略首先基于深度学习预测时间域航空电磁激电参数,进而给时间常数和频率相关系数一个较小的约束范围后再反演电阻率和极化率,由此大大减少反演的多解性.针对电阻率和极化率的反演,我们采用统计学中Pearson相关系数构建两种物性参数的相关性约束,进一步减少反演多解性.为验证反演策略的有效性,我们对双棱柱模型和拱形模型分别进行反演试算.理论测试结果表明,基于Pearson相关性约束的电阻率和极化率的反演结果比传统的高斯-牛顿反演结果更接近真实模型,而基于深度学习预测时间常数和频率相关系数后的电阻率和极化率反演结果与给定真实时间常数和频率相关系数后的反演结果效果相当.最后,我们对来自澳大利亚的带激电效应的航空电磁实测数据在考虑和不考虑激电效应条件下进行反演,结果表明考虑激电效应的反演无论数据拟合还是地电断面的连续性均得到明显改善.
-
基于深度学习的航空发动机滑油磨粒检测研究
-
作者:
侯媛媛
李江红
薛军印
来源:
计算机测量与控制
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
YOLOv3模型
滑油磨粒检测
深度学习
SER算法
-
描述:
针对滑油中磨粒形状复杂且尺寸大小不一,传统滑油磨粒检测方法存在时效性差、检测尺度小、精度低、非铁磁性磨粒不能检测等缺点;设计了一种基于深度学习的航空发动机滑油磨粒检测方法;基于连续流微流控芯片的滑油图像采样方法,构建滑油图像采样系统;设计图像增强方法,进行图像数据增强消融试验研究,针对YOLOv3模型和Faster RCNN模型进行精度测试,结果表明消融试验后的YOLOv3模型检测能力明显优于Faster RCNN模型;为减少消融后YOLOv3模型的误检率,提出SER算法以优化该模型的推理置信度阈值;研究结果表明滑油磨粒检测方法可解决传统测试中存在的问题,且在0.35的置信度阈值下,YOLOv3模型的检测结果能够达到94.2%的召回率和95.9%的精确度。
-
基于改进YOLOv5的轻量化航空目标检测方法
-
作者:
杨小冈
高凡
卢瑞涛
李维鹏
张涛
曾俊
来源:
信息与控制
年份:
2022
文献类型 :
期刊
关键词:
注意力
通道剪枝
深度学习
目标检测
模型压缩
-
描述:
,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
-
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
-
作者:
杨洁
万安平
王景霖
单添敏
缪徐
李客
左强
来源:
中国电机工程学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
-
描述:
航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障振动
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的特征提取以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实的某型航空发动机能谱数据基础上,对含氧数据和噪声数据分别进行测试,进一步说明该模型用于对磨损定位识别的有效性,具备实际应用的可行性。
-
航空装配领域中命名实体识别的持续学习框架
-
作者:
刘沛丰
钱璐
赵兴炜
陶波
来源:
浙江大学学报(工学版)
年份:
2023
文献类型 :
期刊
关键词:
航空装配
深度学习
智能制造
命名实体识别
持续学习
-
描述:
框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
-
高分辨率航空遥感图像的建筑物识别
-
作者:
王玉琴
尤静静
蔡世鑫
来源:
北京测绘
年份:
2023
文献类型 :
期刊
关键词:
遥感图像
RCNN)模型
快速区域卷积神经网络(Faster
建筑物识别
深度学习
-
描述:
目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出利用深度学习方法中的快速区域卷积神经网络(Faster RCNN)模型对航空遥感图像进行建筑物识别,经验证,利用Faster RCNN模型对航空遥感图像进行建筑物识别其结果可达93.7%的精准率,平均每张图像识别时间为74 ms,证明了Faster RCNN模型应用于航空遥感图像建筑物识别中的有效性及高效性。
-
基于深度学习的航空铆钉分类及异常情况检测
-
作者:
夏正洪
何琥
吴建军
魏汝祥
来源:
中国安全生产科学技术
年份:
2023
文献类型 :
期刊
关键词:
召回率
精确率
深度学习
目标检测
航空铆钉
-
描述:
针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
<
1
2
3
...
6
7
8
...
33
34
35
>