关键词
航空装配领域中命名实体识别的持续学习框架
作者: 刘沛丰   钱璐   赵兴炜   陶波   来源: 浙江大学学报(工学版) 年份: 2023 文献类型 : 期刊 关键词: 航空装配   深度学习   智能制造   命名实体识别   持续学习  
描述: 框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
高分辨率航空遥感图像的建筑物识别
作者: 王玉琴   尤静静   蔡世鑫   来源: 北京测绘 年份: 2023 文献类型 : 期刊 关键词: 遥感图像   RCNN)模型   快速区域卷积神经网络(Faster   建筑物识别   深度学习  
描述: 目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出利用深度学习方法中的快速区域卷积神经网络(Faster RCNN)模型对航空遥感图像进行建筑物识别,经验证,利用Faster RCNN模型对航空遥感图像进行建筑物识别其结果可达93.7%的精准率,平均每张图像识别时间为74 ms,证明了Faster RCNN模型应用于航空遥感图像建筑物识别中的有效性及高效性。
基于深度学习的航空铆钉分类及异常情况检测
作者: 夏正洪   何琥   吴建军   魏汝祥   来源: 中国安全生产科学技术 年份: 2023 文献类型 : 期刊 关键词: 召回率   精确率   深度学习   目标检测   航空铆钉  
描述: 针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
航空发动机状态监控和预测性维护应用研究
作者: 廖鹏程   李昂   王骁   来源: 测控技术 年份: 2023 文献类型 : 期刊 关键词: 特征提取   深度学习   健康管理   剩余寿命预测   故障预测  
描述: 为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于发动机转动件、气路监测的状态监控和故障预测,选取波音某型飞机故障数据验证了模型的准确性,平均绝对百分比误差(MAPE)能达到8.46%;采用卡尔曼滤波(KF)结合梯度提升决策树(GBDT)的方法对数据进行降噪并预测剩余寿命,通过美国国家航空航天局(NASA)的航空发动机仿真数据集验证了模型能达到91.3%的准确率;采用核主成分分析(KPCA)结合深度置信网络(DBN)的方法建立发动机气路健康监控模型,经过大量QAR数据验证和测试,预测相对误差为0.43%。针对基于数据挖掘的航空发动机故障诊断算法开展研究,设计了相应的算法,开展了实验验证,通过有效的数据预处理和模型参数调节,使得故障诊断性能达到较高水准,为航空发动机的预测性维护提供了重要参考。
基于深度学习的航空发动机磨损部位识别方法
作者: 苗慧慧   曹桂松   孙智君   康玉祥   马佳丽   陈果   来源: 润滑与密封 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   一维卷积残差网络   能谱分析   深度学习   磨损  
描述: 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的特征提取以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实的某型航空发动机能谱数据基础上,对含氧数据和噪声数据分别进行测试,进一步说明该模型用于对磨损定位识别的有效性,具备实际应用的可行性。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于RDK-ELM的航空发动机控制系统故障诊断
作者: 陈虹潞   黄向华   来源: 航空发动机 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   极限学习机   控制系统   简约改进   故障诊断   深度学习  
描述: 为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
稀疏驱动的航空发动机主轴承智能监测研究(英文)
作者: 丁宝庆   武靖耀   孙闯   王诗彬   陈雪峰   李应红   来源: Transactions of Nanjing University of Aeronautics and Astronautics 年份: 2021 文献类型 : 期刊 关键词: 特征提取   稀疏模型   变分自编码   智能监测   深度学习   航空发动机主轴承  
描述: 微弱特征提取是航空发动机健康监测与智能诊断的关键技术之一。本文针对航空发动机主轴承微弱故障智能监测难题,基于信号先验提出增强稀疏驱动的智能监测方法。通过分析经典凸稀疏诊断模型难以兼顾信号降噪与特征重构性能的缺陷,构建基于莫罗包络理论的非凸正则凸优化增强稀疏模型,以实现微弱特征提取;进而提出稀疏驱动的深度卷积变分自编码网络智能监测方法,通过对健康状态稀疏降噪样本的训练实现对故障异常状态的智能识别。通过航空发动机主轴承疲劳寿命试验的工程案例对提出方法进行性能验证,结果表明:增强稀疏驱动的智能监测方法具有良好的异常状态智能识别能力,能够有效支撑航空发动主轴承微弱故障的智能监测与诊断。
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
面向航空影像下车辆目标的实时检测算法
作者: 杨国亮   许楠   洪志阳   范振   来源: 计算机工程与设计 年份: 2019 文献类型 : 期刊 关键词: 卷积   实时   深度学习   神经网络   车辆检测   航空影像  
描述: 为解决自然场景下的通用目标检测框架对航空影像下的小车辆目标检测性能不足的缺陷,提出一种专用于航空影像下的小车辆目标实时检测器,即轻量级尺度公平单卷积检测器(lightweight scale fair single convolution detector,LSFSCD)。相比传统检测方法和基于CNN的通用检测等方法,其架构更加简单,模型更小。该架构减少了误检和错检,实现更高检测精度的同时减少训练时间。通过使用Caffe框架在8g显存GTX1080上对VEDAI和DLR数据集进行实验,其结果验证了所提算法的有效性。
< 1 2 3 ... 6 7 8 9
Rss订阅