首页
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻动态
全部
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻
首页>
根据【关键词:
YOLO,深度学习,目标检测,叶片凸台,胶囊网络
】搜索到相关结果
149
条
按文献类别分组
期刊
(149)
按栏目分组
期刊
(149)
按年份分组
2024
(41)
2023
(29)
2022
(27)
2021
(19)
2020
(9)
2019
(10)
2018
(11)
2017
(3)
按来源分组
推进技术
(7)
激光与光电子学进展
(7)
计算机工程
(5)
遥感学报
(4)
雷达学报
(4)
测绘科学技术学报
(4)
航空计算技术
(3)
电子测量与仪器学报
(2)
测绘通报
(2)
中国科学数据(中英文网络版)
(2)
自动化应用
(2)
计算机与数字工程
(2)
电子测试
(2)
激光与红外
(2)
中国科学院大学学报
(2)
航空维修与工程
(2)
信息与控制
(2)
电光与控制
(2)
航空电子技术
(2)
计算机工程与应用
(1)
航空科学技术
(1)
兵工自动化
(1)
光学精密工程
(1)
计算机仿真
(1)
航空制造技术
(1)
交通科技与管理
(1)
机电工程技术
(1)
太原科技大学学报
(1)
中国安全生产科学技术
(1)
吉林大学学报(理学版)
(1)
关键词
作者:
秦子轩
张晓东
白广芝
任先聪
来源:
航空发动机
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
剩余可用寿命
深度学习
多头注意力机制
多尺度卷积双向长短期记忆网络
描述:
基于CNN-LSTM混合模型的民航非计划事件分析方法
作者:
王捷
周迪
左洪福
陆扬
来源:
计算机与数字工程
年份:
2024
文献类型 :
期刊
关键词:
长短时记忆神经网络
卷积神经网络
深度学习
民航安全
文本分析
描述:
安全是民航业的核心主题,非计划事件是辨识安全隐患、改善航空安全的重要信息来源。非计划事件的非结构化和数量庞大等特性使得人工分析变得困难且效率低下。为提高非计划事件的分析效率和精度,论文提出了一种基于CNN-LSTM的混合深度神经网络模型,用于民航非计划事件的自动化分析。并与SVM、CNN、LSTM等模型进行比较,在航空公司的事件日志样本数据集上进行训练并做出事件分类结果的判断。实验结果表明,所提出的CNN-LSTM混合模型具有最高的分类准确率,对于不平衡数据样本,具有最稳定的分类性能。
技能领域
深度学习
评价核心指标构建与量表开发研究——以飞机维修虚拟仿真学习为例
作者:
穆肃
高春瑾
田巨
来源:
广州开放大学学报
年份:
2024
文献类型 :
期刊
关键词:
飞机维修
深度学习
量表开发
虚拟仿真
评价指标
描述:
学生主动、有深度的学习有利于促进职业技能提升。教学质量评价是职业技能教学的重要一环,
深度学习
理论可为技术支持下的专业技能教学与评价提供理论支持和实践指导。本研究以飞机维修虚拟仿真教学为例,采用
航空发动机叶片表面损伤与检测研究进展
作者:
程亚茹
李湉
薛辉
黎红英
王丹
唐鋆磊
来源:
航空发动机
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
机器视觉
叶片损伤
深度学习
无损检测
描述:
航空发动机叶片的工作环境极其恶劣,表面会出现各种类型的损伤。在损伤早期进行表面检测能够有效预防因损伤扩展导致的叶片失效断裂。发动机叶片表面损伤的检测和评估主要由人工操作,严重依赖工作经验,但人工检测不仅效率低下,而且检测结果容易受到人为因素的影响。为了高效、高精度地检测发动机叶片表面损伤,从叶片失效形式出发,综述了发动机叶片在停放和运行2种状态下的损伤机理,并重点阐述了涡流检测、渗透检测等常用于叶片表面损伤检测的方法。总结了基于机器视觉的检测技术,分析机器视觉检测面临数据集稀缺和单一性的挑战,认为收集大量数据并进一步完善评估标准是未来发动机叶片表面损伤检测系统研究的重点方向。
基于深度迁移学习的复杂机场场景飞机
目标检测
方法
作者:
钟聃
李铁虎
李诚
来源:
光子学报
年份:
2024
文献类型 :
期刊
关键词:
深度学习
机场场面
迁移学习
特征金字塔网络
飞机目标检测
描述:
提出了一种改进的
深度学习
模型,旨在解决检测问题。首先基于迁移学习,微调预训练模型,提高了模型在有限的飞机数据集中的特征提取能力。其次,融入调整模块以增加深层特征图的感受野,提升模型的鲁棒性。引入
基于
深度学习
的水上飞机非定常水载荷重构
作者:
樊云翔
艾化楠
王明振
曹楷
刘学军
吕宏强
来源:
航空学报
年份:
2024
文献类型 :
期刊
关键词:
扩散模型
时序卷积网络
稀疏数据
深度学习
非定常流场重构
描述:
动载荷数据非线性强且数据稀疏,传统的流场重构方法难以适用。采用时序卷积网络(TCN)对水上飞机入水的船底时序流场重构问题进行建模研究,通过
深度学习
优秀的非线性拟合能力学习流场规律,并在传统的TCN基础上
基于概率稀疏自注意力的航空发动机剩余寿命预测
作者:
王欣
黄佳琪
许雅玺
来源:
科学技术与工程
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
概率稀疏自注意力
剩余寿命预测
描述:
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。
考虑燃烧室出口温度分布的航空发动机部件级模型
作者:
郑前钢
张宏维
张海波
来源:
推进技术
年份:
2024
文献类型 :
期刊
关键词:
燃烧室出口温度分布
深度学习
预测模型
全包线
发动机部件级模型
描述:
发动机在不同工作状态、不同包线点下的燃烧室出口温度分布场。结果表明:Inception-反卷积网络在训练集和测试集上的均方误差比常规反卷积降低
11
.83%和5.6%,比WGAN-GP降低87%和90
SAR图像飞机目标智能检测识别技术研究进展与展望
作者:
罗汝
赵凌君
何奇山
计科峰
匡纲要
来源:
雷达学报
年份:
2024
文献类型 :
期刊
关键词:
可解释人工智能
合成孔径雷达
深度学习
飞机目标
目标检测与识别
描述:
提升了SAR图像飞机
目标检测
与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于
深度学习
的SAR图像飞机
目标检测
与识别进行了全面回顾和综述,深入分析
航空发动机润滑系统故障知识图谱构建及应用
作者:
吴闯
张亮
唐希浪
崔利杰
谢小月
来源:
北京航空航天大学学报
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
深度学习
润滑系统
知识问答
知识图谱
描述:
故障知识图谱本体概念的基础上,采用双向长短期记忆(BiLSTM)神经网络和条件随机场(CRF)等
深度学习
技术实现知识自主抽取,并基于余弦距离和Jaccard相关系数法进行多源异构故障知识的融合。同时,基于
<
1
2
3
...
12
13
14
15
>
Rss订阅
订阅地址: