首页>
根据【关键词:YOLO,深度学习,目标检测,叶片凸台,胶囊网络 】搜索到相关结果 104 条
基于改进候选区域网络的红外飞机检测
作者:
姜晓伟
王春平
付强
来源:
激光与红外
年份:
2019
文献类型 :
期刊
关键词:
聚类
红外飞机
卷积神经网络
目标检测
描述:
为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means聚类算法的工作原理、实现流程、存在的弊端以及该算法的主要改进手段,并利用K-means聚类算法对Faster R-CNN锚点框的生成方式进行了改进。最后在CAFFE框架平台下进行了多次仿真实验,测试集来源于自建的专用于空中红外飞机检测任务的数据集,实验结果表明本文采用的改进手段可以在保证较高平均准确率AP的同时提高检测速度,并且给出了最适用于本文自建数据集利用聚类算法的k值。
基于YOLOv4的航空发动机叶片凸台目标检测
作者:
陈为
钟欣童
张婧
李泽辰
来源:
计算机仿真
年份:
2022
文献类型 :
期刊
关键词:
数据增强
目标检测
叶片凸台检测
聚类分析
描述:
针对航空发动机内部检测叶片凸台缺陷的问题,提出了一种基于YOLOv4(You Only Look Once)的目标检测算法。算法使用迁移学习加载了在coco公开数据集上训练的预训练模型权重,为了更好的适应对凸台检测中小目标、结构复杂的特点,通过聚类分析的方法调整先验框尺寸,同时对原始数据集使用Mosaic方法进行数据增强。实验结果表明,改进后的YOLOv4模型在检测精度上提高了15.85%,召回率提高了21%,平均交并比可达0.75,检测性能优于在同一数据集中使用的SSD目标检测算法。
改进YOLO V3遥感图像飞机识别应用
作者:
郑志强
刘妍妍
潘长城
李国宁
来源:
电光与控制
年份:
2019
文献类型 :
期刊
关键词:
YOLO
Densenet
遥感图像
means
卷积神经网络
飞机识别
k
V3
描述:
为了准确识别遥感图像中的飞机,基于YOLO V3算法,通过使用K-means算法对数据集进行聚类分析,借鉴Densenet网络的思想,将YOLO V3网络中的两个残差网络模块替换为两个密集网络模块,改进为一种Dense-YOLO深度卷积神经网络结构。对改进前与改进后的网络进行训练,分别选出使两个网络识别效果最好的权重文件,针对高质量遥感图像与过度曝光、云雾遮挡等低质量遥感图像分别进行测试与分析。实验结果表明,新改进的深度卷积神经网络应用在两种图像上效果均有提升。其中,改进的算法在高质量的遥感图像中准确率高达99.72%,比原始算法准确率提升了0.85%,召回率高达98.34%,召回率提升了1.94%。在低质量遥感图像中准确率高达96.12%,比原始算法准确率提升了5.07%,召回率高达93.10%,召回率提升了19.75%。
基于多结构卷积神经网络的高分遥感影像飞机目标检测
作者:
姚相坤
万里红
霍宏
方涛
来源:
计算机工程
年份:
2017
文献类型 :
期刊
关键词:
特征提取
卷积神经网络
多结构网络
目标检测
高分遥感影像
描述:
传统的遥感影像目标检测方法大多利用人工提取特征,难以用于背景复杂的高分辨率遥感影像。针对该问题,构建一种多结构卷积神经网络模型(MSCNN)自动学习目标特征。通过改变卷积滤波器尺寸、数量以及网络层数,分别设计4种不同结构的CNN以提取目标从低层、中层到高层不同尺度的特征信息,并将4种CNN输出采用串行方式连接并输入到BP神经网络分类器进行训练。在检测阶段采用滑动窗口方法进行目标搜索。对高分辨遥感影像中飞机的检测实验结果表明,MSCNN在虚警率和召回率上较4种单一结构的CNN具有明显的检测优势,召回率平均提升6%,虚警率平均降低3%。对油罐的检测结果进一步表明,MSCNN可以推广到对遥感影像其他目标的检测。
基于深度神经网络的遥感图像飞机目标检测
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1 值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
基于深度神经网络的遥感图像飞机目标检测
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1 值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
雷达回波序列中弱小飞机目标检测跟踪数据集
作者:
宋志勇
回丙伟
范红旗
周剑雄
朱永锋
达凯
张晓峰
苏宏艳
金威
张永杰
杨彩霞
蔺震
樊润东
来源:
中国科学数据(中英文网络版)
年份:
2021
文献类型 :
期刊
关键词:
数据集
雷达回波序列
目标检测
弱小目标
目标跟踪
描述:
杂波背景下的雷达弱小目标检测跟踪是低空安全防控、区域态势监视、远程精确打击、空天攻防对抗等军民应用领域的热点和难点问题。本文针对杂波下雷达弱小目标检测跟踪技术研究的数据需求以及目前公开的雷达杂波下目标环境数据缺乏、场景设计针对性差、仿真数据真实性不足、实测数据格式不规范、数据描述与标注信息不全等问题,通过雷达外场实地数据录取与数据加工处理,提供了一套以地物杂波下固定翼无人机为探测对象的雷达弱小目标检测跟踪标准数据集。数据集涵盖强杂波、低信噪比、高动态、强机动、目标数目变化等典型场景,共计15段数据,每段数据包含一定时长的雷达脉冲序列,以及与之对应的距离波门文件和标注真值文件,数据格式规范、信息标注准确,可为雷达弱小目标探测识别算法设计与验证、地面杂波特性研究等提供基础数据。
地/空背景下红外图像弱小飞机目标检测跟踪数据集
作者:
回丙伟
宋志勇
范红旗
钟平
胡卫东
张晓峰
凌建国
苏宏艳
金威
张永杰
白亚茜
来源:
中国科学数据(中英文网络版)
年份:
2021
文献类型 :
期刊
关键词:
固定翼飞机目标
序列图像
红外弱小目标
目标检测
目标跟踪
描述:
红外弱小目标检测跟踪是远程精确打击、空天攻防对抗和遥感情报侦察等军事应用中的重要研究内容。针对当前红外目标探测识别领域仿真数据真实性不足、实测数据样本匮乏的情况,本数据集面向低空飞行的弱小飞机目标检测跟踪应用,通过外场实地拍摄和数据准备加工,提供了一套以一架或多架固定机翼无人机目标为探测对象的算法测试数据集。数据集获取场景涵盖了天空、地面等背景以及多种场景,共计22段数据、30条航迹、16 177帧图像、16 944个目标,每个目标对应一个标注位置,每段数据对应一个标注文件。本数据集可为弱小目标探测、精确制导和红外目标特性等研究提供基础数据。
基于半监督学习的遥感飞机图像检测方法
作者:
杜泽星
殷进勇
杨建
来源:
激光与光电子学进展
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
图像处理
目标检测
半监督学习
生成式对抗网络
描述:
基于半监督学习的遥感飞机图像检测方法
基于FCN与CNN的遥感影像飞机目标检测方法
作者:
李文斌
何冉
来源:
计算机工程
年份:
2020
文献类型 :
期刊
关键词:
FCN
遥感图像
CNN
目标检测
像素级标签
描述:
进行抑制;使用图像级标签代替目标级标签进行CNN训练、以及使用图像的CNN底层特征图制作像素级标签来训练FCN。实验表明,本模型获得了95.78%的准确率、98.98%的召回率、0.9735的F1 分数,具有优异的检测性能和良好的泛化能力。