首页>
根据【关键词:遥感图像,卷积神经网络,深度学习,分数阶Gabor变换,飞机目标检测】搜索到相关结果 196 条
-
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
-
作者:
高峰
曲建岭
袁涛
高峰娟
来源:
电子测量与仪器学报
年份:
2019
文献类型 :
期刊
关键词:
航空发动机
长短时记忆网络
寿命预测
深度学习
差分时域特征
-
描述:
深度学习理论的基础上,着重考虑不同传感器之间的参数关系,引入差分时域特征扩充特征集,构建了基于长短时记忆网络的寿命预测模型DTF-LSTM。在C-MAPSS数据集上的实验结果表明,该算法相较于其他深度学习算法具有更低的均方根误差(RMSE)值,可以有效实现发动机剩余寿命预测。
-
基于深度学习的航空监视方法研究
-
作者:
王艳明
王宝珠
来源:
电子测量技术
年份:
2019
文献类型 :
期刊
关键词:
航空监视
深度学习
人工智能
国土安全
俯视视角
-
描述:
我国是一个幅员辽阔的国家,地理条件复杂,常规的国土安全巡检方法会耗费大量人力物力。为此,提出了一种基于深度学习的航空监视方法,其利用无人机从高空采集图像,并利用卷积神经网络对采集图像进行分类判断
-
一种高效的高分辨率遥感影像飞机目标检测方法
-
作者:
刘媛
姚剑
冯辰
来源:
测绘地理信息
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
直线概率图
深度学习
飞机检测
显著性
-
描述:
一种高效的高分辨率遥感影像飞机目标检测方法
-
某型军用飞机下降阶段燃油消耗模型研究
-
作者:
吴祯涛
李学仁
杜军
来源:
信号处理
年份:
2020
文献类型 :
期刊
关键词:
互信息
长短期记忆网络
飞参数据
深度学习
燃油消耗
-
描述:
某型军用飞机下降阶段燃油消耗模型研究
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
基于深度学习的航空发动机传感器故障检测
-
作者:
刘云龙
谢寿生
郑晓飞
边涛
来源:
传感器与微系统
年份:
2018
文献类型 :
期刊
关键词:
飞参数据
深度学习
故障检测
深度置信网络
航空发动机传感器
-
描述:
针对传统反向传播(BP)神经网络和支持向量机(SVM)存在的过拟合、维数灾难、参数选择困难等问题,提出了一种基于深度学习算法的航空发动机传感器故障检测方法。对发动机参数记录仪采集的多维数据进行预处理
-
基于深度学习的航空铆钉分类及异常情况检测
-
作者:
夏正洪
何琥
吴建军
魏汝祥
来源:
中国安全生产科学技术
年份:
2023
文献类型 :
期刊
关键词:
召回率
精确率
深度学习
目标检测
航空铆钉
-
描述:
针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
-
航空装配领域中命名实体识别的持续学习框架
-
作者:
刘沛丰
钱璐
赵兴炜
陶波
来源:
浙江大学学报(工学版)
年份:
2023
文献类型 :
期刊
关键词:
航空装配
深度学习
智能制造
命名实体识别
持续学习
-
描述:
框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
-
航空发动机状态监控和预测性维护应用研究
-
作者:
廖鹏程
李昂
王骁
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
特征提取
深度学习
健康管理
剩余寿命预测
故障预测
-
描述:
为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于发动机转动件、气路监测的状态监控和故障预测,选取波音某型飞机故障数据验证了模型的准确性,平均绝对百分比误差(MAPE)能达到8.46%;采用卡尔曼滤波(KF)结合梯度提升决策树(GBDT)的方法对数据进行降噪并预测剩余寿命,通过美国国家航空航天局(NASA)的航空发动机仿真数据集验证了模型能达到91.3%的准确率;采用核主成分分析(KPCA)结合深度置信网络(DBN)的方法建立发动机气路健康监控模型,经过大量QAR数据验证和测试,预测相对误差为0.43%。针对基于数据挖掘的航空发动机故障诊断算法开展研究,设计了相应的算法,开展了实验验证,通过有效的数据预处理和模型参数调节,使得故障诊断性能达到较高水准,为航空发动机的预测性维护提供了重要参考。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
<
1
2
3
...
14
15
16
...
18
19
20
>