按文献类别分组
按栏目分组
关键词
基于深度学习的航空发动机滑油磨粒检测研究
作者: 侯媛媛   李江红   薛军印   来源: 计算机测量与控制 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   YOLOv3模型   滑油磨粒检测   深度学习   SER算法  
描述: 针对滑油中磨粒形状复杂且尺寸大小不一,传统滑油磨粒检测方法存在时效性差、检测尺度小、精度低、非铁磁性磨粒不能检测等缺点;设计了一种基于深度学习的航空发动机滑油磨粒检测方法;基于连续流微流控芯片的滑油
航空发动机外形点云的特征分割方法
作者: 闫杰琼   周来水   胡少乾   文思扬   来源: 光学学报 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   机器视觉   外形点云   深度学习   特征分割  
描述: 提出了迫切需求。为了使重建出的发动机外形几何模型尽可能地保留准确的结构特征,提出了一种基于深度学习的航空发动机外形点云特征分割方法,该方法将整体点云分割成特征数据与非特征数据,这有利于后续采用不同的方法
基于二次分解重构策略的航空客流需求预测
作者: 栗慧琳   李洪涛   李智   来源: 计算机应用 年份: 2022 文献类型 : 期刊 关键词: 二次分解重构   多步预测   深度学习   航空客流需求预测   模型匹配  
描述: 、深圳宝安国际机场和海口美兰国际机场的航空客流数据作为研究对象进行了1步和多步预测实验,实验结果表明,与一次分解集成模型STL-SAAB相比,所提模型的均方根误差(RMSE)提升了14.98
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
航空发动机外形点云特征分割的训练集构建
作者: 文思扬   周来水   闫杰琼   胡少乾   来源: 机械制造与自动化 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   深度学习   点云分割   训练集   逆向工程  
描述: 在航空发动机外形重建过程中,需要将外形点云数据进行分割,获得更小、连贯、具有相同属性点的点云片段,以利于之后点云数据的分类提取。设计一种用于航空发动机外形特征点云分割的深度学习训练数据集的构建方法
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
作者: 李浩   王卓健   李哲   陈煊   李园   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   寿命预测   深度学习   预测模型   数据融合  
描述: 针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于深度学习的航空发动机磨损部位识别方法
作者: 苗慧慧   曹桂松   孙智君   康玉祥   马佳丽   陈果   来源: 润滑与密封 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   一维卷积残差网络   能谱分析   深度学习   磨损  
描述: 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
时间域航空电磁激发极化参数三维反演研究
作者: 满开峰   殷长春   刘云鹤   孙思源   熊彬   来源: 地球物理学报 年份: 2023 文献类型 : 期刊 关键词: Pearson相关约束   激发极化效应   时间域航空电磁   深度学习   3D反演  
描述: Pearson相关性约束和深度学习算法相结合的时间域航空电磁激发极化参数反演策略.该反演策略首先基于深度学习预测时间域航空电磁激电参数,进而给时间常数和频率相关系数一个较小的约束范围后再反演电阻率和极化率,由此
< 1 2 3 ... 13 14 15 ... 18 19 20
Rss订阅