首页>
根据【关键词:相位补偿,核自适应滤波,Cadzow谱估计,旋翼噪声,有源噪声消除,深度学习】搜索到相关结果 79 条
-
基于深度学习的航空影像非正规垃圾堆放点监测技术研究与实践
-
作者:
李军吉
应良中
陶文旷
来源:
测绘通报
年份:
2023
文献类型 :
期刊
关键词:
深度学习
无人机
航空影像
非正规垃圾堆放点
-
描述:
城市化进程的加快导致垃圾随处堆放的问题日益突出,给城市的环境及居民的生活质量造成了严重的影响。利用遥感手段快速监测非正规垃圾堆放点具有及时性和高效性,因此具有十分重要的意义。本文结合无人机高分辨率航空影像及非正规垃圾堆分布特征,提出了按地域特征勾画样本数据集提取样本数据特征,采用U/Net和Swin Transformer融合模型,以及针对性改进训练流程开展非正规垃圾堆放点信息分类研究。试验以绍兴市越城区、柯桥区和上虞区作为研究区域,利用飞马航测无人机获取航空影像数据,对比分析了本文提出的方法和基于深度学习的典型地物要素提取方法在非正规垃圾堆放点监测上的应用,试验结果表明本文提出的方法准确率提高了1.72倍。
-
基于深度学习的航空装备保障初级指挥专业人才培养探索
-
作者:
王利明
祝华远
纪云飞
马海洋
刘杨
来源:
大学教育
年份:
2023
文献类型 :
期刊
关键词:
初级指挥
培养方式
深度学习
航空装备保障
-
描述:
该研究基于深度学习理论,从情感、行为、认知3个层面,采取认知重组、联系、反馈、参与、问题、激励、交互、拓展8项策略,构建了以16项教学活动为主体的深度学习策略模型,探索了课程与教学活动相耦合的人才培养方式。教学实践表明,该研究使航空装备保障初级指挥专业人才培养的“指挥管理”特质得到巩固强化。
-
基于Bi/GRU模型的航空发动机外部液压管路故障诊断研究
-
作者:
黄续芳
赵平
冯铃
张丽
来源:
机床与液压
年份:
2023
文献类型 :
期刊
关键词:
液压管路
故障诊断
深度学习
Bi/GRU模型
-
描述:
针对航空液压管路故障信号含有噪声干扰导致管路故障识别困难的问题,提出一种基于双向门控循环单元(Bi/GRU)的深度学习液压管路故障诊断方法。由Bi/GRU神经网络模型综合液压管路数据进行时序特征提取,基于同一含噪声的液压管路振动实测数据,输入到Bi/GRU、GRU、RNN、SVM、BPNN等5种故障诊断模型中进行训练。最后,为了进一步展示Bi/GRU模型对于航空液压管路不同故障类型特征的学习能力,利用t/SNE降维算法进行液压管路特征可视化。结果表明:基于Bi/GRU航空故障诊断方法能达到99.60%的准确性,明显优于GRU等其他4种神经网络模型,Bi/GRU模型在含有噪声的液压管路数据上具备更出色的特征提取能力,可有效地提取出液压管路故障数据特征,从而实现了液压管路故障的智能化识别。
-
基于关键点检测的航空发动机螺栓安装缺陷自动化检测方法
-
作者:
辛佳雯
王睿
谢艳霞
孙军华
来源:
仪器仪表学报
年份:
2023
文献类型 :
期刊
关键词:
关键点检测
深度学习
双目立体视觉
缺陷检测
-
描述:
针对航空发动机螺栓存在背景复杂、目标小、且精细特征不明显的问题,本文研究了一种基于关键点检测的航空发动机螺栓安装缺陷的自动化检测方法。首先设计了基于Faster RCNN和改进CPN(AD-CPN)的级联卷积神经网络,实现了图像中螺栓及二维关键点的检测,可判断该螺栓是否脱落、漏装。为进一步检测螺栓的三维安装缺陷,通过欧氏距离选择策略对已检测出的关键点进行双目匹配、筛选以获得检测点对,最后对检测点对三维重构,并计算出螺栓的实际长度,从而判断螺栓是否错装。实验结果表明,相较于CPN,AD-CPN的mAP、AP50、AP75分别提升了2.9%、3.3%、4%;螺栓测量长度的相对平均误差约为3.0%,可见该方法具有较高的缺陷检测准确率,有效保障了航空发动机的安全运行。
-
航空装配领域中命名实体识别的持续学习框架
-
作者:
刘沛丰
钱璐
赵兴炜
陶波
来源:
浙江大学学报(工学版)
年份:
2023
文献类型 :
期刊
关键词:
航空装配
深度学习
智能制造
命名实体识别
持续学习
-
描述:
框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
-
高分辨率航空遥感图像的建筑物识别
-
作者:
王玉琴
尤静静
蔡世鑫
来源:
北京测绘
年份:
2023
文献类型 :
期刊
关键词:
遥感图像
RCNN)模型
快速区域卷积神经网络(Faster
建筑物识别
深度学习
-
描述:
目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出利用深度学习方法中的快速区域卷积神经网络(Faster RCNN)模型对航空遥感图像进行建筑物识别,经验证,利用Faster RCNN模型对航空遥感图像进行建筑物识别其结果可达93.7%的精准率,平均每张图像识别时间为74 ms,证明了Faster RCNN模型应用于航空遥感图像建筑物识别中的有效性及高效性。
-
基于深度学习的航空铆钉分类及异常情况检测
-
作者:
夏正洪
何琥
吴建军
魏汝祥
来源:
中国安全生产科学技术
年份:
2023
文献类型 :
期刊
关键词:
召回率
精确率
深度学习
目标检测
航空铆钉
-
描述:
针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
-
航空发动机状态监控和预测性维护应用研究
-
作者:
廖鹏程
李昂
王骁
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
特征提取
深度学习
健康管理
剩余寿命预测
故障预测
-
描述:
为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于发动机转动件、气路监测的状态监控和故障预测,选取波音某型飞机故障数据验证了模型的准确性,平均绝对百分比误差(MAPE)能达到8.46%;采用卡尔曼滤波(KF)结合梯度提升决策树(GBDT)的方法对数据进行降噪并预测剩余寿命,通过美国国家航空航天局(NASA)的航空发动机仿真数据集验证了模型能达到91.3%的准确率;采用核主成分分析(KPCA)结合深度置信网络(DBN)的方法建立发动机气路健康监控模型,经过大量QAR数据验证和测试,预测相对误差为0.43%。针对基于数据挖掘的航空发动机故障诊断算法开展研究,设计了相应的算法,开展了实验验证,通过有效的数据预处理和模型参数调节,使得故障诊断性能达到较高水准,为航空发动机的预测性维护提供了重要参考。
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。