首页>
根据【关键词:数据,多源异构,故障诊断,飞机,全寿命周期】搜索到相关结果 507 条
-
航空发动机信号采集处理及故障检测方法研究
-
作者:
刘伟
周卓峰
黄新阳
来源:
内燃机与配件
年份:
2023
文献类型 :
期刊
关键词:
集成学习
滚动轴承
特征提取
机器学习
故障诊断
旋转机械
-
描述:
近年来,随着现代航空发动机信号数据越来越庞大,以往基于信号处理的传统故障诊断方法已经逐步无法满足航空设备“大数据”时代的故障检测要求,在故障检测领域,以人工智能为代表的计算机技术得到了越来越多的应用
-
航空发动机气路故障诊断的SANNWA-PF算法
-
作者:
许梦阳
黄金泉
鲁峰
来源:
航空动力学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
自适应
粒子滤波
神经网络
非高斯噪声
-
描述:
针对航空发动机非线性、非高斯的特点,提出一种用于航空发动机气路故障诊断的自适应神经网络权值调整粒子滤波(SANNWA-PF)算法。该算法根据粒子分布情况确定分裂和调整的粒子数目,进而根据粒子权重采用
-
Cessna 525飞机刹车系统典型故障分析
-
作者:
王立纲
来源:
西安航空学院学报
年份:
2018
文献类型 :
期刊
关键词:
故障诊断
525
故障分析
刹车系统
Cessna
防滞
-
描述:
了相应的故障诊断优先程序,有助于在排故过程中迅速准确地找到根源,节约时间,提高该飞机整体的运营效率。同时对维护同种机型的其他通航单位也有一定的借鉴意义。
-
飞机液压系统故障诊断
-
作者:
李耀华
王星州
来源:
计算机工程与应用
年份:
2019
文献类型 :
期刊
关键词:
信息熵
熵权法
故障诊断
飞机液压系统
人工蜂群
反向传播(BP)神经网络
-
描述:
为有效诊断飞机液压系统故障,根据液压系统压力信号采用了熵权ABC-BP神经网络的故障诊断模型。模型先提取飞机液压系统压力信号的特征值,根据熵权法计算特征值信息熵,选取熵权值较大的作为神经网络的输入
-
基于集成学习的航空发动机故障诊断方法
-
作者:
徐萌
席泽西
王雍赟
李晓露
来源:
中国民航大学学报
年份:
2019
文献类型 :
期刊
关键词:
集成学习
航空发动机
故障诊断
分类模型
气路参数
数据挖掘
-
描述:
航空发动机内部结构复杂、故障耦合性高,现有机器学习模型和集成学习模型的故障诊断性能难以满足不断提升的飞行安全需求。针对该问题,提出一种基于Stacking集成学习的航空发动机故障诊断方法。首先,依据
-
基于复合算法的航空发动机磨损故障诊断
-
作者:
黄帆
李艳军
曹愈远
李依林
来源:
航空计算技术
年份:
2019
文献类型 :
期刊
关键词:
支持向量机
油液分析
航空发动机
故障诊断
相对劣化度
免疫系统
-
描述:
针对航空发动机油液数据种类多样,所处状态阶段存在矛盾性,且传统三线值法制定状态界限值存在缺陷等问题,结合支持向量机理论(SVM),相对劣化度评估和人工免疫算法(AIS),提出了一种航空发动机磨损故障诊断
-
飞机电缆短路故障分析及机理研究
-
作者:
李红
邓乐武
罗强
张永强
韩杨
来源:
四川电力技术
年份:
2020
文献类型 :
期刊
关键词:
暂态分析
故障诊断
接触电阻
绝缘层
短路
热效应
-
描述:
飞机电缆短路故障分析及机理研究
-
基于深度学习的航空传感器故障诊断方法
-
作者:
郑晓飞
郭创
姚斌
冯华鑫
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
信号重构
故障诊断
深度学习
航空传感器
深度置信网络
故障隔离
-
描述:
网络隐层节点数选取的递推公式,构建深度置信网络状态观测器。离线训练时,利用飞行数据训练深度置信网络观测器。在线诊断时,通过比较观测器输出值与实际输出值判断故障类型,并给出3种故障隔离与信号重构方法。仿真结果表明,与BP神经网络观测器相比,该方法能够快速准确地进行故障诊断与隔离,并且完成信号重构。
-
应用深度核极限学习机的航空发动机部件故障诊断
-
作者:
逄珊
杨欣毅
张勇
韦祥
来源:
推进技术
年份:
2018
文献类型 :
期刊
关键词:
极限学习机
故障诊断
深度神经网络
核方法
涡扇发动机
部件
-
描述:
解决现有的基于数据驱动的发动机部件故障诊断方法的不足,提高诊断精度,缩短训练时间,将核方法和多层极限学习机(Multilayer extreme learning machine,M-ELM)相结合
-
应用深度核极限学习机的航空发动机部件故障诊断
-
作者:
逄珊
杨欣毅
张勇
韦祥
来源:
推进技术
年份:
2018
文献类型 :
期刊
关键词:
极限学习机
故障诊断
深度神经网络
核方法
涡扇发动机
部件
-
描述:
解决现有的基于数据驱动的发动机部件故障诊断方法的不足,提高诊断精度,缩短训练时间,将核方法和多层极限学习机(Multilayer extreme learning machine,M-ELM)相结合
<
1
2
3
...
45
46
47
...
49
50
51
>