按文献类别分组
关键词
基于深度迁移学习的航空发动机滚动轴承故障智能诊断
作者: 张向阳   来源: 南京航空航天大学 年份: 2020 文献类型 : 学位论文 关键词: 滚动轴承   航空发动机   卷积神经网络   机匣   深度学习   迁移学习   智能诊断  
描述: 基于深度迁移学习的航空发动机滚动轴承故障智能诊断
基于LSTM-CNN的飞机空调系统故障分析研究
作者: 李志鹏   来源: 南京航空航天大学 年份: 2021 文献类型 : 学位论文 关键词: CNN   LSTM   特征融合   ACMS   VAR模型   故障分析   迁移学习  
描述: 基于LSTM-CNN的飞机空调系统故障分析研究
基于深度神经网络的遥感影像飞机目标检测与型号识别方法
作者: 刘思婷   来源: 兰州交通大学 年份: 2022 文献类型 : 学位论文 关键词: 关键点检测   R   CNN   型号识别   Mask   迁移学习   飞机目标检测  
描述: 基于深度神经网络的遥感影像飞机目标检测与型号识别方法
基于两阶段迁移学习的Multi-scale SE-ResNet50深度卷积神经网络的多标签航空图像分类问题研究
作者: 刘乙萱   苏鑫   来源: 数学的实践与认识 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   ResNet50   航空图像分类   多标签   多尺度特征融合   迁移学习  
描述: 的提取;利用两阶段迁移学习优化模型初始化参数,进一步提高模型精度和泛化能力.实验结果表明,算法在UCM多标签数据集上的macro-F1为98.4%,分别高于MobileNet v2,VGG1
基于深度迁移学习的航空发动机滚动轴承故障智能诊断
作者: 张向阳   来源: 南京航空航天大学 年份: 2020 文献类型 : 学位论文 关键词: 滚动轴承   航空发动机   卷积神经网络   机匣   深度学习   迁移学习   智能诊断  
描述: 基于深度迁移学习的航空发动机滚动轴承故障智能诊断
基于LSTM-CNN的飞机空调系统故障分析研究
作者: 李志鹏   来源: 南京航空航天大学 年份: 2021 文献类型 : 学位论文 关键词: CNN   LSTM   特征融合   ACMS   VAR模型   故障分析   迁移学习  
描述: 基于LSTM-CNN的飞机空调系统故障分析研究
基于深度神经网络的遥感影像飞机目标检测与型号识别方法
作者: 刘思婷   来源: 兰州交通大学 年份: 2022 文献类型 : 学位论文 关键词: 关键点检测   R   CNN   型号识别   Mask   迁移学习   飞机目标检测  
描述: 基于深度神经网络的遥感影像飞机目标检测与型号识别方法
基于两阶段迁移学习的Multi-scale SE-ResNet50深度卷积神经网络的多标签航空图像分类问题研究
作者: 刘乙萱   苏鑫   来源: 数学的实践与认识 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   ResNet50   航空图像分类   多标签   多尺度特征融合   迁移学习  
描述: 的提取;利用两阶段迁移学习优化模型初始化参数,进一步提高模型精度和泛化能力.实验结果表明,算法在UCM多标签数据集上的macro-F1为98.4%,分别高于MobileNet v2,VGG1
CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images
作者: Irfan   Javid     Rozaida   Ghazali     Waddah   Saeed     Tuba   Batool     Ebrahim   Al   Wajih   来源: Sustainability 年份: 2023 文献类型 : 期刊 关键词: semantic   Kalman   categorization   recognition   extended   vehicle   filter   pooling   U   and   pyramid   segmentation   spatial   Net  
描述: The escalation in vehicular traffic, in conjunction with global population growth, has precipitated heightened road congestion, augmented air pollution, and a rise in vehicular accidents. Over the past decade, the global vehicular count has witnessed a substantial surge. In this context, traffic monitoring emerges as a paramount challenge, especially within developing nations. This research introduces an innovative system for vehicle detection and categorization aimed at intelligent traffic monitoring. The system utilizes a convolutional neural network-based U-Net model for the segmentation of aerial images. After segmentation, the outputs are further analyzed for vehicle identification. This vehicle detection utilizes an advanced spatial pyramid pooling (ASPP) mechanism which refines the spatial partitions of the image and captures intricate details, enhancing the accuracy and precision of the detection process. Detected vehicles are then categorized into distinct subcategories. For the effective management and control of high-density traffic flow, the extended Kalman filter (EKF) technique is employed, thereby reducing the reliance on human oversight. In experimental evaluations, our proposed model exhibits exemplary vehicle detection capabilities across the German Aerospace Center (DLR3K) and the Vehicle Detection in Aerial Imagery (VEDAI) datasets. Potential applications of the system encompass vehicle identification in traffic streams, traffic congestion assessment, intersection traffic density analysis, differentiation of vehicle types, and pedestrian pathway determination.
CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images
作者: Irfan   Javid     Rozaida   Ghazali     Waddah   Saeed     Tuba   Batool     Ebrahim   Al   Wajih   来源: Sustainability 年份: 2023 文献类型 : 期刊 关键词: semantic   Kalman   categorization   recognition   extended   vehicle   filter   pooling   U   and   pyramid   segmentation   spatial   Net  
描述: The escalation in vehicular traffic, in conjunction with global population growth, has precipitated heightened road congestion, augmented air pollution, and a rise in vehicular accidents. Over the past decade, the global vehicular count has witnessed a substantial surge. In this context, traffic monitoring emerges as a paramount challenge, especially within developing nations. This research introduces an innovative system for vehicle detection and categorization aimed at intelligent traffic monitoring. The system utilizes a convolutional neural network-based U-Net model for the segmentation of aerial images. After segmentation, the outputs are further analyzed for vehicle identification. This vehicle detection utilizes an advanced spatial pyramid pooling (ASPP) mechanism which refines the spatial partitions of the image and captures intricate details, enhancing the accuracy and precision of the detection process. Detected vehicles are then categorized into distinct subcategories. For the effective management and control of high-density traffic flow, the extended Kalman filter (EKF) technique is employed, thereby reducing the reliance on human oversight. In experimental evaluations, our proposed model exhibits exemplary vehicle detection capabilities across the German Aerospace Center (DLR3K) and the Vehicle Detection in Aerial Imagery (VEDAI) datasets. Potential applications of the system encompass vehicle identification in traffic streams, traffic congestion assessment, intersection traffic density analysis, differentiation of vehicle types, and pedestrian pathway determination.
< 1 2 3 ... 12 13 14
Rss订阅