描述:
规则。实验结果表明:将改进的CART决策树算法应用于某型航空发动机油液故障诊断,提取的规则可解释性强,能够减小冗余属性及噪声对决策的影响,与常用故障诊断算法相比,该模型的诊断准确率提升20%左右,AUC(area under curve)值高达92%,可以有效处理高维离散型航空发动机小样本故障问题。
描述:
规则。实验结果表明:将改进的CART决策树算法应用于某型航空发动机油液故障诊断,提取的规则可解释性强,能够减小冗余属性及噪声对决策的影响,与常用故障诊断算法相比,该模型的诊断准确率提升20%左右,AUC(area under curve)值高达92%,可以有效处理高维离散型航空发动机小样本故障问题。
描述:
规则。实验结果表明:将改进的CART决策树算法应用于某型航空发动机油液故障诊断,提取的规则可解释性强,能够减小冗余属性及噪声对决策的影响,与常用故障诊断算法相比,该模型的诊断准确率提升20%左右,AUC(area under curve)值高达92%,可以有效处理高维离散型航空发动机小样本故障问题。
描述:
规则。实验结果表明:将改进的CART决策树算法应用于某型航空发动机油液故障诊断,提取的规则可解释性强,能够减小冗余属性及噪声对决策的影响,与常用故障诊断算法相比,该模型的诊断准确率提升20%左右,AUC(area under curve)值高达92%,可以有效处理高维离散型航空发动机小样本故障问题。