关键词
超声红外热像技术发展现状及其在航空材料缺陷检测中的应用
作者: 冯辅周   朱俊臻   李志农   来源: 航空制造技术 年份: 2023 文献类型 : 期刊 关键词: 超声红外热像   无损检测   主动热像   航空材料   缺陷检测  
描述: 超声红外热像技术兼具缺陷定位精准、热像信噪比高、材料适用范围广等特点,在航空材料检测方面已有不俗表现,主要应用于发动机叶片、起落架、机翼、蜂窝夹层等关键部件和结构的缺陷检测。在简要介绍超声红外热像
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对
基于LabVIEW Vision的航空炮弹缺陷检测方案设计
作者: 蔺佳哲   王茜   耿广龙   来源: 火力与指挥控制 年份: 2018 文献类型 : 期刊 关键词: Vision   航空炮弹   LabVIEW   缺陷检测   虚拟仪器技术  
描述: 航空炮弹在勤务保障过程中,容易受到环境和外力的破坏而造成表面的损伤,影响正常的飞行训练甚至危及载机安全。采用虚拟仪器平台提供的LabVIEW Vision视觉开发工具包,结合灰度直方图筛选、Saturation分量图像提取、灰度形态学Erode和Dilate变换以及最大熵阈值分割的图像处理等技术手段,对待测航空炮弹图像进行分析处理,精确判断炮弹锈蚀和划痕缺陷问题。试验结果表明,系统具有较高的可行性和可靠性,可以实现炮弹缺陷的快速鲁棒检测,提高了炮弹检测的效率和精度,对于提升航空弹药保障信息化、智能化水平具有重要意义。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对
基于改进EfficientDet的飞机蒙皮缺陷检测方法
作者: 卜晓燕     张宪法     李明慧     葛恩德     冯静璇     曹嘉玲   来源: 航空制造技术 年份: 2025 文献类型 : 期刊 关键词: 飞机蒙皮   注意力机制   多尺度特征融合   尺度感知   缺陷检测  
描述: 基于改进EfficientDet的飞机蒙皮缺陷检测方法
基于新型深度神经网络的民机表面缺陷识别
作者: 张德银   陈从翰   黄选红   徐志强   来源: 计算技术与自动化 年份: 2020 文献类型 : 期刊 关键词: 深度神经网络   表面缺陷识别   Inception   Net   残差   民航飞机  
描述: 为解决机务人员依靠经验来对民航飞机的表面缺陷进行识别时易发生误判的问题,开发了一种用于民机表面的缺陷识别的结合Inception-net和残差模块的新型深度神经网络。首先,通过对各机场的在修飞机表面
应用深度核极限学习机的航空发动机部件故障诊断
作者: 逄珊   杨欣毅   张勇   韦祥   来源: 推进技术 年份: 2018 文献类型 : 期刊 关键词: 极限学习机   故障诊断   深度神经网络   核方法   涡扇发动机   部件  
描述: 运用传统单隐层的神经网络进行航空发动机部件故障诊断识别受其浅层结构影响,精度不高,而用深度置信网络(Deep belief network,DBN)等深度学习方法则存在耗时、参数训练复杂的问题。为解决现有的基于数据驱动的发动机部件故障诊断方法的不足,提高诊断精度,缩短训练时间,将核方法和多层极限学习机(Multilayer extreme learning machine,M-ELM)相结合,提出一种深度核极限学习机(Deep kernel extreme learning machine,DK-ELM)。算法首先利用深度网络结构对输入数据进行逐层的特征提取,抽象得到的特征通过核函数实现高维空间映射分类。这些措施有利于提高算法的分类精度和泛化性能,在训练速度上较深度学习也有明显的提高。将该算法与深度学习和其他极限学习机算法进行综合比较研究,结果表明:基于DK-ELM的诊断方法有效、可靠,便于实现,为航空发动机部件故障诊断提供一个更为优秀实用的工具。
应用深度核极限学习机的航空发动机部件故障诊断
作者: 逄珊   杨欣毅   张勇   韦祥   来源: 推进技术 年份: 2018 文献类型 : 期刊 关键词: 极限学习机   故障诊断   深度神经网络   核方法   涡扇发动机   部件  
描述: 运用传统单隐层的神经网络进行航空发动机部件故障诊断识别受其浅层结构影响,精度不高,而用深度置信网络(Deep belief network,DBN)等深度学习方法则存在耗时、参数训练复杂的问题。为解决现有的基于数据驱动的发动机部件故障诊断方法的不足,提高诊断精度,缩短训练时间,将核方法和多层极限学习机(Multilayer extreme learning machine,M-ELM)相结合,提出一种深度核极限学习机(Deep kernel extreme learning machine,DK-ELM)。算法首先利用深度网络结构对输入数据进行逐层的特征提取,抽象得到的特征通过核函数实现高维空间映射分类。这些措施有利于提高算法的分类精度和泛化性能,在训练速度上较深度学习也有明显的提高。将该算法与深度学习和其他极限学习机算法进行综合比较研究,结果表明:基于DK-ELM的诊断方法有效、可靠,便于实现,为航空发动机部件故障诊断提供一个更为优秀实用的工具。
基于CNN-BiLSTM的航空发动机滑油流量故障诊断预测方法研究
作者: 张青     赵洪利     杨佳强   来源: 内燃机与配件 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   CNN   深度神经网络   BiLSTM   快速存取(QAR)数据   滑油流量预测  
描述: 航空发动机滑油系统为整个发动机的传动系统、轴承齿轮等部件提供滑油,是保证航空发动机正常运行的重要系统,因此准确对航空发动机滑油量进行预测是对保证飞机飞行的安全有重要意义的。为了提高预测准确性,提出了一种基于CNN-BiLSTM的航空发动机滑油流量预测模型,可以同时捕捉数据中的空间特征以及时序关系。以某航QAR数据进行验证,结果与CNN和LSTM模型进行对比,左发预测准确率提升了2.43%和7.85,右发预测准确率提升了7.97%和10.82%,证明了本文所提方法的有效性,为航空发动机滑油流量故障诊断的预测方法提供了新的解决方案。
基于ECSDNN的航空安全事件风险等级预测
作者: 冯霞     桑潇     左海超   来源: 北京航空航天大学学报 年份: 2024 文献类型 : 期刊 关键词: 集成学习   代价敏感   深度神经网络   风险等级预测   嵌入特征编码   航空安全  
描述: 型属性嵌入特征编码和数值型属性拼接的方法实现航空安全事件数据的特征表示;综合考虑错分比例和固定代价设计代价敏感矩阵和代价敏感损失函数,构建基于代价敏感深度神经网络(CSDNN)的基分类器模型;采用硬
< 1 2 3 4
Rss订阅