首页>
根据【关键词:建筑物,卷积神经网络,DenseNets,上采样 】搜索到相关结果 47 条
基于深度学习的光学遥感图像飞机检测算法
作者:
董永峰
仉长涛
汪鹏
冯哲
来源:
激光与光电子学进展
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
图像处理
目标检测
深度学习
Mask
RCNN算法
描述:
基于深度学习的光学遥感图像飞机检测算法
多特征融合的高分辨率遥感影像飞机目标变化检测
作者:
徐俊峰
张保明
余东行
林雨准
郭海涛
来源:
遥感学报
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
卷积神经网络
多特征融合
变化检测
飞机目标
遥感
多元变化检测
描述:
为利用高分辨率遥感影像实现高精度的飞机目标变化检测,提出了一种自适应的多特征融合变化检测与深度学习相结合的方法。首先,通过加权迭代的多元变化检测法获取变化强度图,并结合自适应的直方图统计法自动获取显著的变化与不变化样本;然后,提取多时相影像的光谱、边缘和纹理特征,完成多特征融合的变化检测,并通过形态学处理得到变化图斑;最后,利用训练的NIN(Network in Network)结构的卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。
基于图像识别的航空姿态指引仪故障检测系统
作者:
彭俊榕
魏麟
谭任翔
何峻毅
来源:
仪表技术
年份:
2023
文献类型 :
期刊
关键词:
姿态指引仪
卷积神经网络
维修
故障检测
图像识别
Hough变换
描述:
对于航空姿态指引仪的维修,仅靠人工目视检测效率低下,为了解决该问题,研究出一种基于Hough变换和改进的AlexNet卷积神经网络的图像识别算法。通过分析处理和识别分类指引仪表盘图像的特定区域,及时检测出指引仪倾斜角和俯仰角的指示情况。实验表明,以该算法为核心的故障检测系统,能够较准确地判断指引仪是否存在故障或是否符合维修标准,检出率在90%以上。由于该系统的应用,机务维修人员可以远程诊断航空姿态指引仪的故障,高效完成维修工作。
基于统一网络架构的多模态航空影像质量评价研究
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。
一种基于级联神经网络的飞机检测方法
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
描述:
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
基于神经网络的航空行李点云检测方法研究
作者:
翁博文
胡丹丹
罗其俊
来源:
电子世界
年份:
2020
文献类型 :
期刊
关键词:
随机梯度下降法
测试数据集
点云特征
卷积神经网络
点云数据
云检测
三层感知机
全局特征
多层感知机
描述:
针对航空旅客托运行李相似度高、几何特征强、材质复杂等特点,提出一种基于多层神经网络的航空行李点云检测方法。该方采用MLP结构对点云的全局特征进行描述,并针对点云的几何特征引入X-Conv卷积以增强对边缘点云的几何描述,增强网络对空洞点云的识别能力。通过在某机场现场采集的行李点云数据集验证了该方法的准
改进YOLO V3遥感图像飞机识别应用
作者:
郑志强
刘妍妍
潘长城
李国宁
来源:
电光与控制
年份:
2019
文献类型 :
期刊
关键词:
YOLO
Densenet
遥感图像
means
卷积神经网络
飞机识别
k
V3
描述:
为了准确识别遥感图像中的飞机,基于YOLO V3算法,通过使用K-means算法对数据集进行聚类分析,借鉴Densenet网络的思想,将YOLO V3网络中的两个残差网络模块替换为两个密集网络模块,改进为一种Dense-YOLO深度卷积神经网络结构。对改进前与改进后的网络进行训练,分别选出使两个网络识别效果最好的权重文件,针对高质量遥感图像与过度曝光、云雾遮挡等低质量遥感图像分别进行测试与分析。实验结果表明,新改进的深度卷积神经网络应用在两种图像上效果均有提升。其中,改进的算法在高质量的遥感图像中准确率高达99.72%,比原始算法准确率提升了0.85%,召回率高达98.34%,召回率提升了1.94%。在低质量遥感图像中准确率高达96.12%,比原始算法准确率提升了5.07%,召回率高达93.10%,召回率提升了19.75%。