首页>
根据【关键词:遥感图像,极坐标系,深度学习,亚像素,倾斜目标检测】搜索到相关结果 88 条
-
基于深度学习的航空铆钉分类及异常情况检测
-
作者:
夏正洪
何琥
吴建军
魏汝祥
来源:
中国安全生产科学技术
年份:
2023
文献类型 :
期刊
关键词:
召回率
精确率
深度学习
目标检测
航空铆钉
-
描述:
针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
-
航空发动机状态监控和预测性维护应用研究
-
作者:
廖鹏程
李昂
王骁
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
特征提取
深度学习
健康管理
剩余寿命预测
故障预测
-
描述:
为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于发动机转动件、气路监测的状态监控和故障预测,选取波音某型飞机故障数据验证了模型的准确性,平均绝对百分比误差(MAPE)能达到8.46%;采用卡尔曼滤波(KF)结合梯度提升决策树(GBDT)的方法对数据进行降噪并预测剩余寿命,通过美国国家航空航天局(NASA)的航空发动机仿真数据集验证了模型能达到91.3%的准确率;采用核主成分分析(KPCA)结合深度置信网络(DBN)的方法建立发动机气路健康监控模型,经过大量QAR数据验证和测试,预测相对误差为0.43%。针对基于数据挖掘的航空发动机故障诊断算法开展研究,设计了相应的算法,开展了实验验证,通过有效的数据预处理和模型参数调节,使得故障诊断性能达到较高水准,为航空发动机的预测性维护提供了重要参考。
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
基于RDK-ELM的航空发动机控制系统故障诊断
-
作者:
陈虹潞
黄向华
来源:
航空发动机
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
极限学习机
控制系统
简约改进
故障诊断
深度学习
-
描述:
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
-
稀疏驱动的航空发动机主轴承智能监测研究(英文)
-
作者:
丁宝庆
武靖耀
孙闯
王诗彬
陈雪峰
李应红
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
特征提取
稀疏模型
变分自编码
智能监测
深度学习
航空发动机主轴承
-
描述:
微弱特征提取是航空发动机健康监测与智能诊断的关键技术之一。本文针对航空发动机主轴承微弱故障智能监测难题,基于信号先验提出增强稀疏驱动的智能监测方法。通过分析经典凸稀疏诊断模型难以兼顾信号降噪与特征重构性能的缺陷,构建基于莫罗包络理论的非凸正则凸优化增强稀疏模型,以实现微弱特征提取;进而提出稀疏驱动的深度卷积变分自编码网络智能监测方法,通过对健康状态稀疏降噪样本的训练实现对故障异常状态的智能识别。通过航空发动机主轴承疲劳寿命试验的工程案例对提出方法进行性能验证,结果表明:增强稀疏驱动的智能监测方法具有良好的异常状态智能识别能力,能够有效支撑航空发动主轴承微弱故障的智能监测与诊断。
-
面向航空影像下车辆目标的实时检测算法
-
作者:
杨国亮
许楠
洪志阳
范振
来源:
计算机工程与设计
年份:
2019
文献类型 :
期刊
关键词:
卷积
实时
深度学习
神经网络
车辆检测
航空影像
-
描述:
为解决自然场景下的通用目标检测框架对航空影像下的小车辆目标检测性能不足的缺陷,提出一种专用于航空影像下的小车辆目标实时检测器,即轻量级尺度公平单卷积检测器(lightweight scale fair single convolution detector,LSFSCD)。相比传统检测方法和基于CNN的通用检测等方法,其架构更加简单,模型更小。该架构减少了误检和错检,实现更高检测精度的同时减少训练时间。通过使用Caffe框架在8g显存GTX1080上对VEDAI和DLR数据集进行实验,其结果验证了所提算法的有效性。
-
基于深度学习的航空传感器故障诊断方法
-
作者:
郑晓飞
郭创
姚斌
冯华鑫
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
信号重构
故障诊断
深度学习
航空传感器
深度置信网络
故障隔离
-
描述:
为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信网络隐层节点数选取的递推公式,构建深度置信网络状态观测器。离线训练时,利用飞行数据训练深度置信网络观测器。在线诊断时,通过比较观测器输出值与实际输出值判断故障类型,并给出3种故障隔离与信号重构方法。仿真结果表明,与BP神经网络观测器相比,该方法能够快速准确地进行故障诊断与隔离,并且完成信号重构。
-
一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法
-
作者:
崔江
唐军祥
龚春英
张卓然
来源:
中国电机工程学报
年份:
2018
文献类型 :
期刊
关键词:
特征提取
航空发电机
旋转整流器
深度学习
灰色关联度分析
自编码机
-
描述:
提出一种基于灰色关联度分析优化堆栈自动编码器的故障特征自适应提取方法,并用于航空发电机的旋转整流器二极管故障诊断中。首先,采集发电机交流励磁机励磁电流信号;其次,借助灰色关联度和深度学习理论对堆栈编码器网络进行训练学习,以确立其较优的网络结构,通过该网络可以自适应地从励磁电流信号中提取故障特征;训练完毕,借助于支持向量机(support vector machine,SVM)分类器实施故障诊断。对所提方法与快速傅里叶变换方法进行了仿真和物理实验,并对分类性能进行比较。结果表明,所提方法自动化程度高,自适应性能好,所提取的特征用SVM评估可以取得很好的分类效果。
-
基于残差网络的航空发动机滚动轴承故障多任务诊断方法
-
作者:
康玉祥
陈果
尉询楷
潘文平
王浩
来源:
振动与冲击
年份:
2022
文献类型 :
期刊
关键词:
滚动轴承
故障诊断
深度学习
多任务
残差网络
损伤大小
-
描述:
针对当前基于深度学习的航空发动机滚动轴承故障诊断技术诊断任务单一的问题,提出一种基于多任务残差网络的滚动轴承故障诊断方法,该方法采用残差网络为深层特征提取与共享主框架,建立能够同时进行故障诊断的多任务模型。首先,在数据预处理中,将滚动轴承的振动加速度时域信号转换为频谱图,并直接作为网络的输入;然后,应用标签平滑技术对故障类别标签做了平滑处理以提高网络的测试精度;最后,利用两组实际的滚动轴承故障数据集对所建立的多任务模型进行试验验证,将诊断任务划分为:故障状态识别(正常和异常)、故障部位识别(内圈、外圈和滚动体故障)、以及故障程度识别(损伤尺寸大小预测)。结果表明,所搭建的多任务模型在故障状态识别和部位诊断中的准确率达到97%以上。同时,在故障识别中,损伤大小预测达到了满意的精度,充分表明该方法具有很强的故障多任务诊断能力。