首页>
根据【关键词:遥感图像,卷积神经网络,微调,迁移学习,飞机检测 】搜索到相关结果 65 条
基于多变量多步CNN的航空发动机剩余寿命预测
作者:
曹越
来源:
航空计算技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
剩余寿命
端对端预测
状态参数
描述:
针对航空发动机状态参数多、非线性特征提取难、多环节剩余寿命预测累计误差高的痛点问题,提出多变量多步卷积神经网络用于航空发动机剩余寿命预测。将多状态参数对应的长时间序列作为输入样本,连续的剩余寿命值作为模型输出,通过多变量多步卷积神经网络的特征提取与降维处理,实现了从多状态参数到多步剩余寿命的端对端直接预测。利用C/MAPSS仿真数据集进行实例验证,结果表明:多变量多步卷积神经网络能够高效准确的得到端对端剩余寿命预测结果;与其他对比模型相比,也有更低的预测误差。
多特征融合的高分辨率遥感影像飞机目标变化检测
作者:
徐俊峰
张保明
余东行
林雨准
郭海涛
来源:
遥感学报
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
卷积神经网络
多特征融合
变化检测
飞机目标
遥感
多元变化检测
描述:
为利用高分辨率遥感影像实现高精度的飞机目标变化检测,提出了一种自适应的多特征融合变化检测与深度学习相结合的方法。首先,通过加权迭代的多元变化检测法获取变化强度图,并结合自适应的直方图统计法自动获取显著的变化与不变化样本;然后,提取多时相影像的光谱、边缘和纹理特征,完成多特征融合的变化检测,并通过形态学处理得到变化图斑;最后,利用训练的NIN(Network in Network)结构的卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。
基于图像识别的航空姿态指引仪故障检测系统
作者:
彭俊榕
魏麟
谭任翔
何峻毅
来源:
仪表技术
年份:
2023
文献类型 :
期刊
关键词:
姿态指引仪
卷积神经网络
维修
故障检测
图像识别
Hough变换
描述:
对于航空姿态指引仪的维修,仅靠人工目视检测效率低下,为了解决该问题,研究出一种基于Hough变换和改进的AlexNet卷积神经网络的图像识别算法。通过分析处理和识别分类指引仪表盘图像的特定区域,及时检测出指引仪倾斜角和俯仰角的指示情况。实验表明,以该算法为核心的故障检测系统,能够较准确地判断指引仪是否存在故障或是否符合维修标准,检出率在90%以上。由于该系统的应用,机务维修人员可以远程诊断航空姿态指引仪的故障,高效完成维修工作。
基于神经网络的航空行李点云检测方法研究
作者:
翁博文
胡丹丹
罗其俊
来源:
电子世界
年份:
2020
文献类型 :
期刊
关键词:
随机梯度下降法
测试数据集
点云特征
卷积神经网络
点云数据
云检测
三层感知机
全局特征
多层感知机
描述:
针对航空旅客托运行李相似度高、几何特征强、材质复杂等特点,提出一种基于多层神经网络的航空行李点云检测方法。该方采用MLP结构对点云的全局特征进行描述,并针对点云的几何特征引入X-Conv卷积以增强对边缘点云的几何描述,增强网络对空洞点云的识别能力。通过在某机场现场采集的行李点云数据集验证了该方法的准
基于统一网络架构的多模态航空影像质量评价研究
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。