关键词
基于概率稀疏自注意力的航空发动机剩余寿命预测
作者: 王欣     黄佳琪     许雅玺   来源: 科学技术与工程 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   Transformer   深度学习   概率稀疏自注意力   剩余寿命预测  
描述: 以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度
基于深度学习的航空发动机剩余使用寿命预测方法研究
作者: 曹锦山.   来源: 重庆交通大学 年份: 2024 文献类型 : 学位论文 关键词: 航空发动机   Transformer   深度学习   剩余使用寿命   多头自注意力机制  
描述: 基于深度学习的航空发动机剩余使用寿命预测方法研究
基于DETR的高清航空图像目标检测算法研究
作者: 许伟伟.   来源: 电子科技大学 年份: 2024 文献类型 : 学位论文 关键词: DETR   Transformer   知识蒸馏   滑动窗口   航空目标检测  
描述: 基于DETR的高清航空图像目标检测算法研究
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
作者: 张善文     邵彧     李萍     令伟锋   来源: 弹箭与制导学报 年份: 2024 文献类型 : 期刊 关键词: Transformer   Net与Transformer   航空遥感图像飞机检测   多尺度U   Net  
描述: 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer (MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。
基于深度学习的航空发动机剩余使用寿命预测方法研究
作者: 曹锦山.   来源: 重庆交通大学 年份: 2024 文献类型 : 学位论文 关键词: 航空发动机   Transformer   深度学习   剩余使用寿命   多头自注意力机制  
描述: 基于深度学习的航空发动机剩余使用寿命预测方法研究
基于DETR的高清航空图像目标检测算法研究
作者: 许伟伟.   来源: 电子科技大学 年份: 2024 文献类型 : 学位论文 关键词: DETR   Transformer   知识蒸馏   滑动窗口   航空目标检测  
描述: 基于DETR的高清航空图像目标检测算法研究
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
作者: 张善文     邵彧     李萍     令伟锋   来源: 弹箭与制导学报 年份: 2024 文献类型 : 期刊 关键词: Transformer   Net与Transformer   航空遥感图像飞机检测   多尺度U   Net  
描述: 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer (MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。
基于改进YOLOv5的飞机舱门识别与定位方法研究
作者: 张长勇     郭聪     李玉洲     张朋武   来源: 计算机测量与控制 年份: 2024 文献类型 : 期刊 关键词: 舱门识别与定位   YOLOv5   机场特种车辆   自动靠机   三维定位  
描述: 角点的像素,利用空间几何关系,实现了对舱门准确的三维定位。实验结果表明,改进后的YOLOv5算法mAP达到96.5%,相比原有算法提升了5.6%。在舱门前方19 m和1 m处时,实时最大定位误差分别为0.15 m和0.01 m,能够满足特种车辆靠机完成后与舱门保持5~10 cm的安全距离要求。
一种基于Transformer编码器与LSTM的飞机轨迹预测方法
作者: 李明阳     鲁之君     曹东晶     曹世翔   来源: 航天返回与遥感 年份: 2024 文献类型 : 期刊 关键词: Transformer   Encoder   轨迹预测   Transformer编码器   飞机目标   神经网络   LSTM模型  
描述: 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。
基于改进YOLOX的机场场面飞机目标检测
作者: 赵元棣     罗琳璐   来源: 计算机仿真 年份: 2024 文献类型 : 期刊 关键词: 注意力机制   机场场面   飞机目标检测  
描述: 机场场面飞机实时监控是远程塔台系统的基础。为实现对机场场面飞机目标快速而准确的检测,提出一种基于YOLOX融合注意力机制的机场场面飞机目标检测方法。在加强特征提取网络中引入卷积块注意力模块,增大对
< 1 2 3 ... 4 5 6
Rss订阅