关键词
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2020 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 基于深度学习的光学遥感图像飞机检测算法
光学遥感图像飞机目标识别算法
作者: 胡楠   李润生   王载武   来源: 影像技术 年份: 2020 文献类型 : 期刊 关键词: 遥感图像   R   CNN   飞机识别   深度学习   Faster  
描述: 光学遥感图像中蕴含着大量信息,更新速度非常快。使用人工方法对光学遥感图像进行判读和目标的识别显然早已达不到现代社会各领域的需求。实时、高效地从光学遥感图像中识别出感兴趣目标具有非常重要的意义。本文对基于人工智能的图像飞机识别研究现状进行了总结,方便后续学者研究。
基于卷积神经网络的遥感图像飞机目标检测研究
作者: 仉长涛   来源: 河北工业大学 年份: 2020 文献类型 : 学位论文 关键词: 遥感图像   语义信息   卷积神经网络   特征融合   语义分割   目标检测  
描述: 基于卷积神经网络的遥感图像飞机目标检测研究
基于遥感图像飞行器目标的细分类方法研究
作者: 曾妍庆   来源: 国防科技大学 年份: 2020 文献类型 : 学位论文 关键词: 遥感图像   卷积神经网络   前背景分割   飞行器细分类   特征度量   混淆社区  
描述: 基于遥感图像飞行器目标的细分类方法研究
遥感图像飞机目标检测与识别关键技术研究
作者: 李冠典   来源: 长春理工大学 年份: 2022 文献类型 : 学位论文 关键词: 飞机目标高效检测   遥感图像   卷积神经网络   深度学习   目标检测   飞机区域识别网络  
描述: 遥感图像飞机目标检测与识别关键技术研究
基于深度学习的遥感图像飞机检测与分割
作者: 吴启凡   来源: 西安电子科技大学 年份: 2022 文献类型 : 学位论文 关键词: 非对称卷积   遥感图像   R   CNN   深度学习   Mask   自校准卷积  
描述: 基于深度学习的遥感图像飞机检测与分割
基于特征金字塔的高分辨率遥感图像飞机目标检测
作者: 张财广   张杰   匡纲要   来源: 第五届高分辨率对地观测学术年会 年份: 2018 文献类型 : 会议论文 关键词: 遥感图像   R   CNN   Faster   特征金字塔网络   飞机目标检测  
描述: 基于特征金字塔的高分辨率遥感图像飞机目标检测
基于改进SSD的光学飞机遥感图像目标检测算法研究
作者: 王浩桐   来源: 宁夏大学 年份: 2022 文献类型 : 学位论文 关键词: 遥感图像   特征融合   SSD算法   目标检测   k   Means聚类  
描述: 基于改进SSD的光学飞机遥感图像目标检测算法研究
基于改进Faster R-CNN的SAR图像飞机检测算法
作者: 李广帅   苏娟   李义红   来源: 北京航空航天大学学报 年份: 2020 文献类型 : 期刊 关键词: R   CNN   上下文信息   Align   浅层特征增强   Faster   飞机检测   ROI  
描述: 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出一种基于改进Faster R-CNN的SAR图像飞机检测算法。本文制作了一个SAR图像飞机数据集SAD(SAR Aircraft Dataset),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明,相比原始的Faster R-CNN算法,本文提出的改进的Faster R-CNN检测算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
< 1 2 3 4 5 6
Rss订阅