首页>
根据【关键词:起落架安全销,YOLOv5,深度学习,目标检测,坐标注意力】搜索到相关结果 162 条
-
遥感图像飞机目标分类的卷积神经网络方法
-
作者:
周敏
史振威
丁火平
来源:
中国图象图形学报
年份:
2017
文献类型 :
期刊
关键词:
卷积神经网络
深度学习
可见光遥感
飞机
分类
-
描述:
飞机目标分类问题。方法在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
基于深度学习的航空发动机传感器故障检测
-
作者:
刘云龙
谢寿生
郑晓飞
边涛
来源:
传感器与微系统
年份:
2018
文献类型 :
期刊
关键词:
飞参数据
深度学习
故障检测
深度置信网络
航空发动机传感器
-
描述:
针对传统反向传播(BP)神经网络和支持向量机(SVM)存在的过拟合、维数灾难、参数选择困难等问题,提出了一种基于深度学习算法的航空发动机传感器故障检测方法。对发动机参数记录仪采集的多维数据进行预处理
-
航空装配领域中命名实体识别的持续学习框架
-
作者:
刘沛丰
钱璐
赵兴炜
陶波
来源:
浙江大学学报(工学版)
年份:
2023
文献类型 :
期刊
关键词:
航空装配
深度学习
智能制造
命名实体识别
持续学习
-
描述:
框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
-
高分辨率航空遥感图像的建筑物识别
-
作者:
王玉琴
尤静静
蔡世鑫
来源:
北京测绘
年份:
2023
文献类型 :
期刊
关键词:
遥感图像
RCNN)模型
快速区域卷积神经网络(Faster
建筑物识别
深度学习
-
描述:
目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出
-
航空发动机状态监控和预测性维护应用研究
-
作者:
廖鹏程
李昂
王骁
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
特征提取
深度学习
健康管理
剩余寿命预测
故障预测
-
描述:
为了深化飞参数据的应用价值,通过研究发动机转动件故障预测、剩余寿命预测以及气路健康等,为发动机保障决策和预测性维护提供参考。采用经验模态分解(EMD)结合相对向量机(RVM)、灰度模型(GM)用于发动机转动件、气路监测的状态监控和故障预测,选取波音某型飞机故障数据验证了模型的准确性,平均绝对百分比误差(MAPE)能达到8.46%;采用卡尔曼滤波(KF)结合梯度提升决策树(GBDT)的方法对数据进行降噪并预测剩余寿命,通过美国国家航空航天局(NASA)的航空发动机仿真数据集验证了模型能达到91.3%的准确率;采用核主成分分析(KPCA)结合深度置信网络(DBN)的方法建立发动机气路健康监控模型,经过大量QAR数据验证和测试,预测相对误差为0.43%。针对基于数据挖掘的航空发动机故障诊断算法开展研究,设计了相应的算法,开展了实验验证,通过有效的数据预处理和模型参数调节,使得故障诊断性能达到较高水准,为航空发动机的预测性维护提供了重要参考。
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
-
基于时空特征的航空发动机剩余使用寿命预测
-
作者:
徐震震
薛林
马凯
杨玉迪
来源:
电子测量技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
深度学习
时间特征
剩余寿命预测
空间特征
-
描述:
航空发动机作为一种高精密机械部件,对飞机性能和可靠性有重要影响。准确的剩余寿命预测可以降低维修成本,减少安全事故的发生。现有的预测方法只关注传感器数据之间的时间关系,忽略了传感器之间的空间关系。本文提出了一种时空特征融合的网络模型,利用图卷积神经网络和长短时记忆网络分别提取空间特征和时间特征,运用并行结构将时间特征与空间特征融合。在CMAPSS数据集上进行验证,子数据集FD001的RMSE为12.81,Score为252.04,实验结果表明,该方法相对于其他预测方法,预测精度更高。
-
基于社交隐式模型的运输类飞机人员疏散轨迹预测
-
作者:
陈琨
李放
冯振宇
陈向明
段龙坤
来源:
交通运输工程学报
年份:
2024
文献类型 :
期刊
关键词:
民用航空
深度学习
轨迹预测
应急撤离
社交隐式模型
-
描述:
基于社交隐式模型的运输类飞机人员疏散轨迹预测
-
基于深度学习的智慧航空物流综合服务智能问答方法
-
作者:
章丰田
来源:
自动化应用
年份:
2024
文献类型 :
期刊
关键词:
综合服务
智能问答
深度学习
航空物流
智慧航空
-
描述:
基于深度学习的智慧航空物流综合服务智能问答方法
<
1
2
3
...
12
13
14
...
15
16
17
>