关键词
基于概率稀疏自注意力的航空发动机剩余寿命预测
作者: 王欣     黄佳琪     许雅玺   来源: 科学技术与工程 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   Transformer   深度学习   概率稀疏自注意力   剩余寿命预测  
描述: 航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。
基于优化Mask-RCNN算法的遥感飞机目标检测
作者: 葛海婷     杨铁梅   来源: 太原科技大学学报 年份: 2024 文献类型 : 期刊 关键词: 遥感图像   RCNN   深度学习   目标检测   Mask  
描述: 针对传统的图像检测算法在遥感领域中存在的问题,将改进的Mask-RCNN检测算法应用于遥感领域。通过优化Resnet特征提取网络,提高算法的特征提取能力;通过改进NMS非极大值抑制网络,优化区域推荐网络。并在自建的遥感飞机数据集上验证算法的稳定性以及有效性。经检测,改进的算法能够提升遥感图像中飞机的检测精度,并且有效降低了飞机目标的误检和漏检问题。
考虑燃烧室出口温度分布的航空发动机部件级模型
作者: 郑前钢     张宏维     张海波   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 燃烧室出口温度分布   深度学习   预测模型   全包线   发动机部件级模型  
描述: 燃烧室出口温度分布不均匀会使涡轮叶片受到不均匀的热载荷,严重影响涡轮叶片的工作寿命。本文提出一种具有燃烧室出口温度分布预测功能的部件级模型建模方法,为燃烧室出口温度分布控制研究提供了仿真平台。以变循环发动机为研究对象,根据其设计点参数设计燃烧室三维模型,通过CFD数值模拟的方法,计算得到该燃烧室三维模型在地面不同工作状态下的燃烧室出口温度分布场,组成温度分布场训练数据集。提出基于Inception-反卷积网络的燃烧室出口温度分布场重建方法,基于该方法构建了燃烧室出口温度分布场预测模型。建立了适用于全包线、全状态,可以预测燃烧室出口温度分布场的部件级模型,与传统的部件级模型相比,该模型能够预测发动机在不同工作状态、不同包线点下的燃烧室出口温度分布场。结果表明:Inception-反卷积网络在训练集和测试集上的均方误差比常规反卷积降低11.83%和5.6%,比WGAN-GP降低87%和90%;部件级模型预测温度分布场和CFD仿真温度分布场的温度分布趋势基本一致;所提出的Inception-反卷积网络预测精度高于常规反卷积网络和WGAN-GP网络预测精度,在热斑处温度点误差更小,在亚声速巡航点(H=8 km,Ma=0.7),(H=8 km,Ma=0.9)和超声速巡航点(H=10 km,Ma=1.4),(H=10 km,Ma=1.6)时,Inception-反卷积网络预测温度分布场的平均温度误差分别为0.05 K,-1.38 K,-1.54 K和4.44 K,均方误差分别为6.7×10-4,1.9×10-4,3.0×10-4和1.4×10-3,热斑温度误差分别为-3.91 K,-3.67 K,-5.34 K和0.85 K。
SAR图像飞机目标智能检测识别技术研究进展与展望
作者: 罗汝     赵凌君     何奇山     计科峰     匡纲要   来源: 雷达学报 年份: 2024 文献类型 : 期刊 关键词: 可解释人工智能   合成孔径雷达   深度学习   飞机目标   目标检测与识别  
描述: 合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR
基于深度学习的高分辨率遥感影像飞机掩体检测方法
作者: 史姝姝     陈永强     王樱洁     王春乐   来源: 激光与光电子学进展 年份: 2024 文献类型 : 期刊 关键词: 遥感影像   目标检测   深度学习   旋转框   遥感  
描述: 高分辨率遥感影像数据集。对比Faster R-CNN、SSD、RetinaNet、YOLOv3和YOLOX等5个深度学习目标检测模型的综合性能,结果表明,在飞机掩体影像数据集上YOLOX模型表现更佳
航空发动机润滑系统故障知识图谱构建及应用
作者: 吴闯     张亮     唐希浪     崔利杰     谢小月   来源: 北京航空航天大学学报 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   深度学习   润滑系统   知识问答   知识图谱  
描述: 知识图谱本体概念的基础上,采用双向长短期记忆(BiLSTM)神经网络和条件随机场(CRF)等深度学习技术实现知识自主抽取,并基于余弦距离和Jaccard相关系数法进行多源异构故障知识的融合。同时,基于
基于改进DRSN的航空发动机故障风险预警模型
作者: 毛浩英     孙有朝     李龙彪     晏传奇   来源: 航空动力学报 年份: 2024 文献类型 : 期刊 关键词: 深度注意力机制   软阈值化   深度残差收缩网络   深度学习   故障风险预警  
描述: 航空发动机属于多发性故障机械,运用先进的计算训练方法可有效地实现准确的风险预警分析,为发动机的运维指导提供参考。在发动机故障风险预警征兆数据集中提取多变量时间序列样本,将样本矩阵化,转换为灰度图样本。预处理并增强图像数据样本,热编码化序列样本标签。深度残差收缩网络(deep residual shrinkage network,DRSN)中融入深度注意力机制与带有阈值的残差收缩块,获取高判别性特征,实现软阈值化。结合长短时记忆神经网络层与多个隐层,改进DRSN模型,使用主成分分析重构特征与主元提取,累积可解释方差贡献率为93.7%。对潜在20种故障征兆识别、分类并预警,训练精确度为96.1%。提出了改进DRSN航空发动机故障风险预警模型,与其他算法相比有较强的鲁棒性,预警正确率至少提高4.4%。
基于改进YOLOv5s的飞机起落架安全销检测算法
作者: 陈世嘉     叶剑元     龚轩     曾康     倪鹏程   来源: 计算机科学 年份: 2025 文献类型 : 期刊 关键词: 起落架安全销   YOLOv5   深度学习   目标检测   坐标注意力  
描述: 基于改进YOLOv5s的飞机起落架安全销检测算法
基于激光雷达点云补全的飞机停泊引导定位研究
作者: 魏宁     李明磊     陈广永     叶方舟   来源: 雷达学报(中英文) 年份: 2025 文献类型 : 期刊 关键词: 点云配准   深度学习   泊位引导系统   三维激光扫描   点云补全  
描述: 基于激光雷达点云补全的飞机停泊引导定位研究
基于计算机视觉的机场跑道上航空器目标检测
作者: 杨昌其     韩一杰     张天航   来源: 航空计算技术 年份: 2025 文献类型 : 期刊 关键词: 计算机视觉   深度学习   航空运输   跑道侵入   航空器检测  
描述: 基于计算机视觉的机场跑道上航空器目标检测
< 1 2 3 ... 10 11 12 13 14
Rss订阅