按文献类别分组
关键词
地/空背景下红外图像弱小飞机目标检测跟踪数据集
作者: 回丙伟   宋志勇   范红旗   钟平   胡卫东   张晓峰   凌建国   苏宏艳   金威   张永杰   白亚茜   来源: 中国科学数据(中英文网络版) 年份: 2021 文献类型 : 期刊 关键词: 固定翼飞机目标   序列图像   红外弱小目标   目标检测   目标跟踪  
描述: 红外弱小目标检测跟踪是远程精确打击、空天攻防对抗和遥感情报侦察等军事应用中的重要研究内容。针对当前红外目标探测识别领域仿真数据真实性不足、实测数据样本匮乏的情况,本数据集面向低空飞行的弱小飞机目标检测跟踪应用,通过外场实地拍摄和数据准备加工,提供了一套以一架或多架固定机翼无人机目标为探测对象的算法测试数据集。数据集获取场景涵盖了天空、地面等背景以及多种场景,共计22段数据、30条航迹、16 177帧图像、16 944个目标,每个目标对应一个标注位置,每段数据对应一个标注文件。本数据集可为弱小目标探测、精确制导和红外目标特性等研究提供基础数据。
基于FCN与CNN的遥感影像飞机目标检测方法
作者: 李文斌   何冉   来源: 计算机工程 年份: 2020 文献类型 : 期刊 关键词: FCN   遥感图像   CNN   目标检测   像素级标签  
描述: 进行抑制;使用图像级标签代替目标级标签进行CNN训练、以及使用图像的CNN底层特征图制作像素级标签来训练FCN。实验表明,本模型获得了95.78%的准确率、98.98%的召回率、0.9735的F1分数,具有优异的检测性能和良好的泛化能力。
基于矩阵信息几何的飞机尾流目标检测方法
作者: 刘俊凯*①   李健兵②     梁①   陈忠宽①   蔡益朝①   来源: 雷达学报 年份: 2018 文献类型 : 期刊 关键词: 矩阵信息几何   飞机尾流   目标检测   矩阵CFAR   矩阵流形  
描述: 矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。
基于矩阵信息几何的飞机尾流目标检测方法
作者: 刘俊凯*①   李健兵②     梁①   陈忠宽①   蔡益朝①   来源: 雷达学报 年份: 2018 文献类型 : 期刊 关键词: 矩阵信息几何   飞机尾流   目标检测   矩阵CFAR   矩阵流形  
描述: 矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。
航空遥感影像中的轻量级小目标检测
作者: 薛雅丽   孙瑜   马瀚融   来源: 电光与控制 年份: 2022 文献类型 : 期刊 关键词: 小目标   遥感图像   特征融合   深度学习   目标检测  
描述: 单阶段目标检测算法凭借结构简单、模型高效等特点获得很多研究者及工业界的关注。以现有的YOLO算法为基础,针对遥感图像中目标尺寸小、排列紧密等困难,提出一种提升复杂背景下小目标检测精度的轻量级目标检测方法。该方法引入加权融合特征网络,为每层特征图赋予可在训练中不断学习的权重系数,加强深浅层特征融合。通过引入CIoU损失及模型改进,加快网络收敛速度,使其满足实时性需求。在基于DOTA构建的遥感图像小目标数据集上进行对比实验,结果表明,该方法具有更好的检测精度与检测速度。
YOLOv4-tiny及其改进算法在航空机务维修照相管理中的应用
作者: 张锐丽   张琦   高万春   李江龙   来源: 兵工自动化 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   tiny   目标检测   YOLOv4   照相管理  
描述: 针对飞机机务维修照相管理存在工作量大、不精确等问题,提出一种利用深度学习YOLOv4-tiny算法来执行照片对比检测的方法。利用一个自制的数据集来训练网络模型,为解决开口销螺母及其他背景干扰,引入注意力机制模块以改进YOLOv4-tiny。测试结果表明:准确率(precision,P)相较原YOLOv4-tiny提高了5%,召回率(recall,R)提高约8%,平均准确率均值(mean average precision,mAP)提高了4.9%,照片识别精度和定位精准性方面都有较优表现,满足照相管理中对目标精准识别与比对的要求。
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
面向航空目标检测的神经网络加速器设计
作者: 施立瑞   王帅帅   肖昊   来源: 航空科学技术 年份: 2022 文献类型 : 期刊 关键词: 卷积神经网络   FPGA   目标检测   Winograd算法   加速器  
描述: 卷积神经网络被广泛应用于航空图像目标检测领域。然而,由于航空图像成像背景环境复杂、目标尺寸小且方向任意,为了提取更高层次的特征信息,神经网络模型的结构复杂度不断提高,使得模型计算复杂度高、计算时间长,从而难以满足航空目标检测的实时性需求。本文提出了一种面向航空目标检测的基于Winograd算法的神经网络加速器,通过Winograd卷积算法可大幅减少卷积计算中的乘法数量,并针对Winograd卷积在神经网络计算中由于时域变换引入额外加法计算的问题,提出了一种深流水的矩阵变换计算结构,通过复用加法计算的中间结果以及调整运算顺序减少输入和输出变换的计算量。同时,针对加速器的现场可编程门阵列(FPGA)实现,提出了一种高效的数据流形式和DSP阵列结构。试验结果表明,本文提出的加速器相比CPU和GPU分别获得了32倍和2.6倍的速度提升。
基于剪枝和去噪的航空发动机故障图像识别与预测
作者: 傅荣春雪   刘君强   冯潇楠   余卓倩   来源: 航空计算技术 年份: 2023 文献类型 : 期刊 关键词: YOLO   图像去噪   目标检测   孔探图像   剪枝算法  
描述: 航空发动机叶片作为航空器重要的零件,其健康状况直接关系到航班的运行安全。叶片由于工作环境恶劣很容易产生裂纹、掉块、烧灼等损伤,目前基于孔探技术的叶片损伤检测以人工为主,检测结果在很大程度上受到人为因素的影响。因此,实现叶片损伤的自动识别及测量对于减轻劳动强度和提高检测精度都有实际的应用价值。首先选择PRIDnet图像去噪算法对原始孔探图像进行预处理,按照训练精度和训练速度两个指标对传统目标检测模型进行通道剪枝和微调。数据集采用国内某航空公司获取到CFM56型发动机在实际运营后机务人员所拍摄的孔探图像,实验结果表明,相比于原始目标检测YOLOv5算法和未经图像预处理的目标检测模型,本方法对航空发动机孔探图像内损伤的检测精度提高4%~10%,在检测效率上提高6%~20%。
< 1 2 3 4
Rss订阅