首页>
根据【关键词:卷积神经网络,长短时记忆网络,不平衡数据学习,时间序列数据预测,时间序列数据异常检测】搜索到相关结果 5 条
-
基于LSTM的航空发电机整流电路诊断技术
-
作者:
陈文杰
崔江
来源:
电机与控制应用
年份:
2023
文献类型 :
期刊
关键词:
整流电路
长短时记忆网络
电励磁双凸极发电机
故障诊断
-
描述:
整流电路是航空发电机的重要组成部分,存在故障频发且维修困难等问题。为对电励磁双凸极发电机(DSEG)的整流电路进行故障诊断,研究了一种基于长短时记忆(LSTM)网络的故障诊断方法。首先,采集多种故障模式下发电机的三相电枢电流信号。其次,利用不同的信号处理方法处理故障信号以获取故障特征信息。然后,将获得的故障特征数据分为训练和测试样本输入LSTM网络进行故障分类。最后,计算并分析诊断结果。仿真与试验结果表明所提方法具有良好的故障诊断效果。
-
基于卷积神经网络的航空零件去噪技术
-
作者:
赵安安
郑炜
郭俊刚
来源:
机械设计与制造工程
年份:
2023
文献类型 :
期刊
关键词:
卷积神经网络
法线估计
计算机辅助设计
点云去噪
-
描述:
为去除在用三维激光扫描技术扫描航空零部件时,因扫描环境、设备等因素带来的大量零件点云噪声,提出基于卷积神经网络的航空零件去噪技术。首先应用经典卷积神经网络预测点云法线信息,然后以此进一步对点云进行位置更新,从而实现点云去噪。经实验证明,与目前的去噪方法相比,所提方法在去噪方面更具优越性。
-
基于多变量多步CNN的航空发动机剩余寿命预测
-
作者:
曹越
来源:
航空计算技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
剩余寿命
端对端预测
状态参数
-
描述:
针对航空发动机状态参数多、非线性特征提取难、多环节剩余寿命预测累计误差高的痛点问题,提出多变量多步卷积神经网络用于航空发动机剩余寿命预测。将多状态参数对应的长时间序列作为输入样本,连续的剩余寿命值作为模型输出,通过多变量多步卷积神经网络的特征提取与降维处理,实现了从多状态参数到多步剩余寿命的端对端直接预测。利用C/MAPSS仿真数据集进行实例验证,结果表明:多变量多步卷积神经网络能够高效准确的得到端对端剩余寿命预测结果;与其他对比模型相比,也有更低的预测误差。
-
基于图像识别的航空姿态指引仪故障检测系统
-
作者:
彭俊榕
魏麟
谭任翔
何峻毅
来源:
仪表技术
年份:
2023
文献类型 :
期刊
关键词:
姿态指引仪
卷积神经网络
维修
故障检测
图像识别
Hough变换
-
描述:
对于航空姿态指引仪的维修,仅靠人工目视检测效率低下,为了解决该问题,研究出一种基于Hough变换和改进的AlexNet卷积神经网络的图像识别算法。通过分析处理和识别分类指引仪表盘图像的特定区域,及时检测出指引仪倾斜角和俯仰角的指示情况。实验表明,以该算法为核心的故障检测系统,能够较准确地判断指引仪是否存在故障或是否符合维修标准,检出率在90%以上。由于该系统的应用,机务维修人员可以远程诊断航空姿态指引仪的故障,高效完成维修工作。
-
基于统一网络架构的多模态航空影像质量评价研究
-
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
-
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。