关键词
基于深度学习的航空传感器故障诊断方法
作者: 郑晓飞   郭创   姚斌   冯华鑫   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 信号重构   故障诊断   深度学习   航空传感器   深度置信网络   故障隔离  
描述: 为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信
基于深度学习网络的航空发电机旋转整流器诊断技术研究
作者: 师鸽   来源: 南京航空航天大学 年份: 2018 文献类型 : 学位论文 关键词: 航空发电机   旋转整流器   故障诊断   深度学习   自动编码器   深度置信网络  
描述: 基于深度学习网络的航空发电机旋转整流器诊断技术研究
基于DBN的航空发电机故障诊断方法研究
作者: 马楠   倪优扬   葛红娟   来源: 航空计算技术 年份: 2021 文献类型 : 期刊 关键词: 特征提取   航空发电机   故障诊断   深度置信网络  
描述: 针对目前故障诊断方法多依赖于信号处理技术、步骤较为繁琐的问题,研究了一种基于深度置信网络的航空主电源故障诊断方法,直接对原始时域信号进行故障特征提取。分析了航空发电机的典型短路故障,构造了深度置信
基于DBN的航空发电机故障诊断方法研究
作者: 马楠   倪优扬   葛红娟   来源: 航空计算技术 年份: 2021 文献类型 : 期刊 关键词: 特征提取   航空发电机   故障诊断   深度置信网络  
描述: 针对目前故障诊断方法多依赖于信号处理技术、步骤较为繁琐的问题,研究了一种基于深度置信网络的航空主电源故障诊断方法,直接对原始时域信号进行故障特征提取。分析了航空发电机的典型短路故障,构造了深度置信
基于深度学习的航空发动机传感器故障检测
作者: 刘云龙   谢寿生   郑晓飞   边涛   来源: 传感器与微系统 年份: 2018 文献类型 : 期刊 关键词: 飞参数据   深度学习   故障检测   深度置信网络   航空发动机传感器  
描述: 针对传统反向传播(BP)神经网络和支持向量机(SVM)存在的过拟合、维数灾难、参数选择困难等问题,提出了一种基于深度学习算法的航空发动机传感器故障检测方法。对发动机参数记录仪采集的多维数据进行预处理,建立基于深度置信网络(DBN)的故障检测模型,利用预处理后的数据对检测模型进行训练,经过DBN故障检测模型逐层特征学习实现了传感器故障检测。仿真结果表明:在无人工特征提取和人工特征提取的情况下,基于DBN故障检测的准确率均高于BP神经网络和SVM模型。
基于DBN的不均衡样本驱动民航发动机故障诊断
作者: 钟诗胜   李旭   张永健   来源: 航空动力学报 年份: 2019 文献类型 : 期刊 关键词: 民航发动机   故障诊断   不均衡样本   深度置信网络   Adaboost.M1算法  
描述: 在结合深度置信网络(DBN)、采样与集成技术的基础上,提出了基于不均衡样本驱动的民航发动机故障诊断模型。该模型通过分析民航发动机历史飞行数据,利用DBN提取性能参数中的内部特征,利用采样技术将不
基于深度置信网络的民航发动机气路故障诊断方法研究
作者: 李旭   来源: 哈尔滨工业大学 年份: 2019 文献类型 : 学位论文 关键词: 民航发动机   特征提取   故障诊断   多维时间序列   不均衡样本   深度置信网络  
描述: 基于深度置信网络的民航发动机气路故障诊断方法研究
某型飞机腹板裂纹分析及改装设计
作者: 彭军   郭晨阳   张勇   张赟   杨欣毅   来源: 系统仿真技术 年份: 2018 文献类型 : 期刊 关键词: 航空发动机   故障诊断   深度学习   神经网络  
描述: 引入深度学习理论,利用深度置信网络算法对由仿真软件生成的航空发动机部件性能衰退故障数据进行求解。与反向传播(BP)神经网络算法和径向基函数(RBF)神经网络算法的比较结果表明:虽然深度学习训练耗费较长时间,但是深度置信网络算法结构克服了浅层网络算法结构的不足,其计算结果能够达到更高诊断精度,并具有较好的抗噪性能。
基于深度学习的飞行器动力系统故障诊断
作者: 张懋石   来源: 厦门大学 年份: 2018 文献类型 : 学位论文 关键词: 自编码网络   故障诊断   深度学习  
描述: 基于深度学习的飞行器动力系统故障诊断
多头注意力驱动的航空高速轴承故障诊断方法
作者: 王兴   张晗   朱家正   林建波   杜朝辉   来源: 振动与冲击 年份: 2023 文献类型 : 期刊 关键词: 多头注意力   航空轴承   故障诊断   深度学习  
描述: 模块对原始振动信号进行特征提取;然后引入多头注意力模块,使网络同时注意并融合不同表示子空间的信息以提高故障特征的显著性水平;最后利用全连接模块和Softmax分类器对提取的特征进行高速轴承故障诊断。试验
< 1 2 ... 45 46 47
Rss订阅