首页>
根据【检索词:航空工业企业 学习型组织 学习树 学习力 领导力】搜索到相关结果 14546 条
-
基于两阶段集成学习的航空客流需求预测研究
-
作者:
李晓瑄
来源:
萍乡学院学报
年份:
2022
文献类型 :
期刊
关键词:
变分模态分解算法
多步超前预测
航空客流需求预测
Bagging
-
描述:
航空客流需求的准确预测对未来机场的发展和民航服务的优化都具有重要意义。为了有效分析和预测航空客流需求的波动情况,文章构建了两阶段集成学习模型,用于航空客流需求的月度预测。在第一阶段,不同基模型并行
-
基于机器学习的航空异常着陆事件检测
-
作者:
杨雄
苏志刚
杨金锋
张海刚
来源:
计算机工程与设计
年份:
2022
文献类型 :
期刊
关键词:
机载快速存取记录器
特征选取
极限梯度提升树
贝叶斯优化
航空安全
异常检测
-
描述:
模型。在经过数据预处理后,设计一种针对航空高维数据的混合特征选取方法,在极限梯度提升树(extreme gradient boosting,XGBoost)模型中引入代价敏感学习函数和聚焦损失改进算法
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理
-
航空装配领域中命名实体识别的持续学习框架
-
作者:
刘沛丰
钱璐
赵兴炜
陶波
来源:
浙江大学学报(工学版)
年份:
2023
文献类型 :
期刊
关键词:
航空装配
深度学习
智能制造
命名实体识别
持续学习
-
描述:
为了构建航空装配领域中装配流程信息、装配技术知识、行业标准和三者内在联系组成的航空装配知识图谱,提出基于持续学习的命名实体识别技术框架.所提框架的特点是从零语料到大规模语料的渐进式学习过程中,在
-
基于深度学习的航空铆钉分类及异常情况检测
-
作者:
夏正洪
何琥
吴建军
魏汝祥
来源:
中国安全生产科学技术
年份:
2023
文献类型 :
期刊
关键词:
召回率
精确率
深度学习
目标检测
航空铆钉
-
描述:
针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
-
基于深度学习的离场航空器滑行时间预测(英文)
-
作者:
李楠
焦庆宇
朱新华
王少聪
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
场面运行
滑行时间
深度学习
航空运输
-
描述:
模型对香港机场离场航空器滑行时间进行预测验证。实验结果显示,STEDL模型预测准确率为95.4%,预测精度明显优于其他机器学习算法。
-
基于机器学习的航空器进近飞行时间预测
-
作者:
叶博嘉
鲍序
刘博
田勇
来源:
航空学报
年份:
2021
文献类型 :
期刊
关键词:
空中交通管理
机器学习
特征重要度
随机森林
进近飞行时间预测
-
描述:
为了准确预测航空器的落地时间,提高空管部门间的协作效率,采用机器学习的方法对航空器进近阶段飞行时间进行了预测。从实际运行出发,分析航空器在进近管制空域飞行时间产生差异的原因,提出了影响航空器在进近
-
基于机器学习的航空器进近飞行时间预测
-
作者:
叶博嘉
鲍序
刘博
田勇
来源:
航空学报
年份:
2021
文献类型 :
期刊
关键词:
空中交通管理
机器学习
特征重要度
随机森林
进近飞行时间预测
-
描述:
为了准确预测航空器的落地时间,提高空管部门间的协作效率,采用机器学习的方法对航空器进近阶段飞行时间进行了预测。从实际运行出发,分析航空器在进近管制空域飞行时间产生差异的原因,提出了影响航空器在进近