首页>
根据【关键词:YOLO,深度学习,目标检测,叶片凸台,胶囊网络 】搜索到相关结果 104 条
基于矩阵信息几何的飞机尾流目标检测方法
作者:
刘俊凯*①
李健兵②
马
梁①
陈忠宽①
蔡益朝①
来源:
雷达学报
年份:
2018
文献类型 :
期刊
关键词:
矩阵信息几何
飞机尾流
目标检测
矩阵CFAR
矩阵流形
描述:
矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。
基于矩阵信息几何的飞机尾流目标检测方法
作者:
刘俊凯*①
李健兵②
马
梁①
陈忠宽①
蔡益朝①
来源:
雷达学报
年份:
2018
文献类型 :
期刊
关键词:
矩阵信息几何
飞机尾流
目标检测
矩阵CFAR
矩阵流形
描述:
矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。
YOLOv4-tiny及其改进算法在航空机务维修照相管理中的应用
作者:
张锐丽
张琦
高万春
李江龙
来源:
兵工自动化
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
tiny
目标检测
YOLOv4
照相管理
描述:
针对飞机机务维修照相管理存在工作量大、不精确等问题,提出一种利用深度学习YOLOv4-tiny算法来执行照片对比检测的方法。利用一个自制的数据集来训练网络模型,为解决开口销螺母及其他背景干扰,引入注意力机制模块以改进YOLOv4-tiny。测试结果表明:准确率(precision,P)相较原YOLOv4-tiny提高了5%,召回率(recall,R)提高约8%,平均准确率均值(mean average precision,mAP)提高了4.9%,照片识别精度和定位精准性方面都有较优表现,满足照相管理中对目标精准识别与比对的要求。
面向航空目标检测的神经网络加速器设计
作者:
施立瑞
王帅帅
肖昊
来源:
航空科学技术
年份:
2022
文献类型 :
期刊
关键词:
卷积神经网络
FPGA
目标检测
Winograd算法
加速器
描述:
卷积神经网络被广泛应用于航空图像目标检测领域。然而,由于航空图像成像背景环境复杂、目标尺寸小且方向任意,为了提取更高层次的特征信息,神经网络模型的结构复杂度不断提高,使得模型计算复杂度高、计算时间长,从而难以满足航空目标检测的实时性需求。本文提出了一种面向航空目标检测的基于Winograd算法的神经网络加速器,通过Winograd卷积算法可大幅减少卷积计算中的乘法数量,并针对Winograd卷积在神经网络计算中由于时域变换引入额外加法计算的问题,提出了一种深流水的矩阵变换计算结构,通过复用加法计算的中间结果以及调整运算顺序减少输入和输出变换的计算量。同时,针对加速器的现场可编程门阵列(FPGA)实现,提出了一种高效的数据流形式和DSP阵列结构。试验结果表明,本文提出的加速器相比CPU和GPU分别获得了32倍和2.6倍的速度提升。
基于深度卷积神经网络的航空器检测与识别
作者:
俞汝劼
杨贞
熊惠霖
来源:
计算机应用
年份:
2017
文献类型 :
期刊
关键词:
卷积神经网络
深度学习
目标检测识别
航空器检测
描述:
%的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1 错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。
基于深度学习的航空发动机剩余使用寿命预测研究
作者:
温海茹
来源:
内燃机与配件
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
深度学习
剩余使用寿命预测
描述:
随着深度学习不断的发展,航空发动机成为近年来的研究热点,其寿命预测的研究也受到了研究学者的关注。本文主要介绍航空发动机的剩余使用寿命预测背景,数据获取过程及基于深度学习的剩余使用寿命的预测方法,以及深度学习在航空发动方面预测的难点和发展趋势。
基于深度学习的航空发动机剩余使用寿命预测研究
作者:
温海茹
来源:
内燃机与配件
年份:
2020
文献类型 :
期刊
关键词:
航空发动机
深度学习
剩余使用寿命预测
描述:
随着深度学习不断的发展,航空发动机成为近年来的研究热点,其寿命预测的研究也受到了研究学者的关注。本文主要介绍航空发动机的剩余使用寿命预测背景,数据获取过程及基于深度学习的剩余使用寿命的预测方法,以及深度学习在航空发动方面预测的难点和发展趋势。
基于深度学习的航空器异常飞行状态识别
作者:
吴奇
储银雪
来源:
民用飞机设计与研究
年份:
2018
文献类型 :
期刊
关键词:
飞行状态识别
深度学习
高斯过程
描述:
飞行设备快速存取记录仪(Quick Access Recorder,以下简称QAR)保留了原始航班各类重要飞行参数在内的航行信息,使研究分析航空器实时状况和保障飞行质量成为可能。针对QAR数据高维大样本的特点,在如今大数据背景下,除了传统机理建模分析航空器飞行状态外,采用深度学习的方式建立基于数据驱动的航空器飞行状态识别模型,理论与实用意义兼具。通过对真实QAR飞行数据的研究,开发了基于深度稀疏受限玻尔兹曼机的异常飞行状态识别程序。首先利用小波降噪技术对原始飞行数据进行预处理清洗,在一系列典型飞行参数上提取经典时域特征以及小波奇异熵等信息熵特征构成特征集。在此基础上,分别利用经典的线性主元分析技术和深度稀疏玻尔兹曼机对特征集进行有效降维,最后采用四折交叉验证方式,通过高斯过程分类器实现对飞行状态的辨识。实验结果显示,基于深度受限玻尔兹曼机-高斯过程分类的飞行状态识别具有较高分类准确性。
基于卷积神经网络的遥感图像飞机目标识别
作者:
晁安娜
刘坤
来源:
微型机与应用
年份:
2018
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
飞机识别
深度学习
描述:
遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用卷积神经网络对飞机目标进行识别,避免了在特征提取过程中信息的丢失,提高了识别率。实验结果证明了该算法在遥感图像飞机目标识别中的可行性,能克服尺度变化及目标姿态变化等因素的影响。同时提出的算法较传统CNN、BP神经网络和支持向量机(SVM)方法具有更好的识别效果,鲁棒性更强。
航空轮胎有限元分析
作者:
刘坤
苏彤
王典
来源:
激光与光电子学进展
年份:
2018
文献类型 :
期刊
关键词:
卷积神经网络
深度学习
模糊不变
目标识别
描述:
由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural Network)的目标识别方法。与仅优化多项式逻辑回归目标的传统CNN(Convolutional Neural Network)模型的训练不同,BICNN引入和学习一个新的模糊不变层改善模糊目标的识别率,提高目标识别的鲁棒性。首先,BICNN通过增加模糊不变约束项及正则化来优化本文提出的模糊不变目标函数进行训练;其次,通过减小模糊不变目标函数值来规定训练样本在模糊之前和之后的特征映射相一致,最终实现模糊不变性。测试结果表明验证,BICNN改善了因模糊造成识别率降低的问题,进而提升运动模糊图像的识别率。
<
1
2
3
4
5
...
9
10
11
>