首页
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻动态
全部
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻
首页>
根据【关键词:
特征提取,实例分割,卷积注意力模块,基于掩模区域的卷积神经网络,深度学习,动态蛇形卷积,航空发动机保险丝
】搜索到相关结果
187
条
按文献类别分组
期刊
(187)
按栏目分组
期刊
(187)
按年份分组
2025
(27)
2024
(34)
2023
(39)
2022
(28)
2021
(14)
2020
(6)
2019
(18)
2018
(14)
2017
(7)
按来源分组
北京航空航天大学学报
(7)
航空动力学报
(5)
航空计算技术
(5)
计算机应用
(5)
科学技术与工程
(3)
信号处理
(3)
中国电机工程学报
(3)
计算机工程
(2)
中国科学:技术科学
(2)
现代雷达
(2)
电子测试
(2)
赣南师范大学学报
(2)
Transactions of Nanjing University of Aeronautics and Astronautics
(2)
测控技术
(2)
计测技术
(2)
测绘学报
(1)
计算机应用与软件
(1)
激光技术
(1)
应用力学学报
(1)
计算机应用研究
(1)
应用光学
(1)
飞控与探测
(1)
火力与指挥控制
(1)
雷达与对抗
(1)
中国光学(中英文)
(1)
经纬天地
(1)
南昌航空大学学报(自然科学版)
(1)
雷达科学与技术
(1)
现代制造工程
(1)
现代电子技术
(1)
关键词
航空发动机外形点云的特征分割方法
作者:
闫杰琼
周来水
胡少乾
文思扬
来源:
光学学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
机器视觉
外形点云
深度学习
特征分割
描述:
提出了迫切需求。为了使重建出的发动机外形几何模型尽可能地保留准确的结构特征,提出了一种基于
深度学习
的航空发动机外形点云特征分割方法,该方法将整体点云分割成特征数据与非特征数据,这有利于后续采用不同的方法
基于二次分解重构策略的航空客流需求预测
作者:
栗慧琳
李洪涛
李智
来源:
计算机应用
年份:
2022
文献类型 :
期刊
关键词:
二次分解重构
多步预测
深度学习
航空客流需求预测
模型匹配
描述:
、深圳宝安国际机场和海口美兰国际机场的航空客流数据作为研究对象进行了
1
步和多步预测实验,实验结果表明,与一次分解集成模型STL-SAAB相比,所提模型的均方根误差(RMSE)提升了14.98
航空遥感影像中的轻量级小目标检测
作者:
薛雅丽
孙瑜
马瀚融
来源:
电光与控制
年份:
2022
文献类型 :
期刊
关键词:
小目标
遥感图像
特征融合
深度学习
目标检测
描述:
单阶段目标检测算法凭借结构简单、模型高效等特点获得很多研究者及工业界的关注。以现有的YOLO算法为基础,针对遥感图像中目标尺寸小、排列紧密等困难,提出一种提升复杂背景下小目标检测精度的轻量级目标检测方法。该方法引入加权融合特征网络,为每层特征图赋予可在训练中不断学习的权重系数,加强深浅层特征融合。通过引入CIoU损失及模型改进,加快网络收敛速度,使其满足实时性需求。在基于DOTA构建的遥感图像小目标数据集上进行对比实验,结果表明,该方法具有更好的检测精度与检测速度。
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
作者:
杨洁
万安平
王景霖
单添敏
缪徐
李客
左强
来源:
中国电机工程学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
描述:
航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,
1
D-CNN)对实验获取的某航空发动机的轴承故障
基于改进YOLOv5的轻量化航空目标检测方法
作者:
杨小冈
高凡
卢瑞涛
李维鹏
张涛
曾俊
来源:
信息与控制
年份:
2022
文献类型 :
期刊
关键词:
注意力
通道剪枝
深度学习
目标检测
模型压缩
描述:
,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高
特征提取
能力;其次在深度可分离卷积层增加
1
×
1
的卷积,在减少卷积结构参数
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
作者:
杨洁
万安平
王景霖
单添敏
缪徐
李客
左强
来源:
中国电机工程学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
描述:
航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,
1
D-CNN)对实验获取的某航空发动机的轴承故障
基于改进YOLOv5的轻量化航空目标检测方法
作者:
杨小冈
高凡
卢瑞涛
李维鹏
张涛
曾俊
来源:
信息与控制
年份:
2022
文献类型 :
期刊
关键词:
注意力
通道剪枝
深度学习
目标检测
模型压缩
描述:
,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高
特征提取
能力;其次在深度可分离卷积层增加
1
×
1
的卷积,在减少卷积结构参数
航空发动机外形点云特征分割的训练集构建
作者:
文思扬
周来水
闫杰琼
胡少乾
来源:
机械制造与自动化
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
深度学习
点云分割
训练集
逆向工程
描述:
在航空发动机外形重建过程中,需要将外形点云数据进行分割,获得更小、连贯、具有相同属性点的点云片段,以利于之后点云数据的分类提取。设计一种用于航空发动机外形特征点云分割的
深度学习
训练数据集的构建方法
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
作者:
李浩
王卓健
李哲
陈煊
李园
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
寿命预测
深度学习
预测模型
数据融合
描述:
针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式
深度学习
对
融合注意力和多尺度特征的航空发动机缺陷检测
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
<
1
2
3
...
11
12
13
...
17
18
19
>
Rss订阅
订阅地址: