按文献类别分组
按栏目分组
关键词
基于迁移学习和改进Faster-RCNN遥感影像飞机目标检测
作者: 周绍鸿     方新建     刘鑫怡     张潆丹     严盛   来源: 机电工程技术 年份: 2024 文献类型 : 期刊 关键词: 遥感影像   目标检测   RCNN   深度学习   Faster   迁移学习  
描述: 为了提高遥感影像飞机目标检测的准确性和泛化能力,需要解决背景复杂、尺度多变、目标密集、飞机朝向不确定和特征不明显等问题。但现阶段训练数据量有限,初始训练需要消耗大量算力和时间,容易出现过拟合现象
基于Transformer的飞机状态预测
作者: 王经纬     高艳鹍     宋澣兴     刘一非   来源: 计算机工程与设计 年份: 2024 文献类型 : 期刊 关键词: 深度学习   状态分类   气动力建模   多任务   大迎角   非定常气动力   时序预测  
描述: 在非定常气动力下,为防止飞机进入危险状态,通过建模进行状态预测,是保障飞行安全的重要手段,传统方法建模过程复杂、工程化难度大且普适性不强。为更好解决大迎角下飞行状态预测,使用基于深度学习的时序序列
基于SW-YOLO模型的航空发动机叶片损伤实时检测
作者: 何宇豪     曹学国     刘信良     蒋浩坤     王静秋   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   实时检测   叶片损伤   深度学习   目标检测   孔探检测  
描述: 孔探检测技术是航空发动机叶片损伤检测的主要手段,但目前依赖人工操作,耗时耗力。本文提出了一个孔探视频检测的SW-YOLO模型,该模型包括输入端、主干网络、颈部网络、头部网络4个模块。首先,在主干网络加入了空间通道注意力模块(Spatial Channel-Convolutional Block Attention Module,SC-CBAM),有效避免位置信息丢失,提高目标边界回归能力,相较于YOLOv5,其平均精度均值■@0.5提高了5.4%。其次,在颈部网络对特征金字塔网络(Feature Pyramid Network,FPN)进行了改进,通过融合低层特征,扩大了模型感受野,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R-CNN,SSD模型的对比实验,结果表明SW-YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢     肖洪     吴丁毅   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFFYOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷
不确定环境下的航空发动机装配线适应性调度方法
作者: 王怡琳     刘鹃     乔非     张家谔   来源: 控制与决策 年份: 2024 文献类型 : 期刊 关键词: 调度规则   航空发动机装配   适应性调度   深度学习   扰动识别   门控循环神经网络  
描述: 航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等.针对不确定环境下的航空发动机装配线的调度问题,提出一种基于门控循环神经网络(GRU)的适应性调度方法.该调度方法包含扰动识别和调度规则调整两个部分:扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐近型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案.最后,以某航空发动机装配线为研究案例,对所提出适应性调度方法进行验证分析.对比实验结果表明,所提出方法能够有效提升装配线的设备利用率、日均生产率等性能.
基于改进Mask R-CNN的航空发动机保险丝实例分割方法
作者: 张凤飞     孙军华   来源: 计测技术 年份: 2025 文献类型 : 期刊 关键词: 特征提取   实例分割   卷积注意力模块   基于掩模区域的卷积神经网络   深度学习   动态蛇形卷积   航空发动机保险丝  
描述: 基于改进Mask R-CNN的航空发动机保险丝实例分割方法
基于GSV-YOLO的飞机起落架缺陷检测方法研究
作者: 李博     许子威     钟飞     陈义华   来源: 电子测量技术 年份: 2025 文献类型 : 期刊 关键词: YOLOv7   tiny   深度学习   Ghost卷积   飞机起落架   缺陷检测  
描述: 基于GSV-YOLO的飞机起落架缺陷检测方法研究
航空发动机滑油磨粒浓度在线检测技术研究
作者: 侯媛媛     李江红   来源: 自动化技术与应用 年份: 2025 文献类型 : 期刊 关键词: 航空发动机滑油   YOLOv3模型   在线检测   深度学习   磨粒浓度   SER算法  
描述: 航空发动机滑油磨粒浓度在线检测技术研究
基于U-Net的半航空瞬变电磁降噪方法及应用
作者: 刘东     冯浩     王用鑫     周小生     姚宇洪     孙怀凤   来源: 煤田地质与勘探 年份: 2025 文献类型 : 期刊 关键词: 半航空瞬变电磁法   复杂噪声   U   深度学习   Net   降噪  
描述: 基于U-Net的半航空瞬变电磁降噪方法及应用
一种基于级联神经网络的飞机检测方法
作者: 王晓林   苏松志   刘晓颖   蔡国榕   李绍滋   来源: 智能系统学报 年份: 2021 文献类型 : 期刊 关键词: 嵌入式设备   遥感图像   级联   卷积神经网络   两阶段   深度学习   飞机检测   由粗到细  
描述: 由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
< 1 2 3 ... 14 15 16
Rss订阅