首页>
根据【关键词:注意力机制优化,特征融合,深度学习,YOLOv5网络,飞机目标检测】搜索到相关结果 151 条
-
基于迁移学习和改进Faster-RCNN遥感影像飞机目标检测
-
作者:
周绍鸿
方新建
刘鑫怡
张潆丹
严盛
来源:
机电工程技术
年份:
2024
文献类型 :
期刊
关键词:
遥感影像
目标检测
RCNN
深度学习
Faster
迁移学习
-
描述:
为了提高遥感影像飞机目标检测的准确性和泛化能力,需要解决背景复杂、尺度多变、目标密集、飞机朝向不确定和特征不明显等问题。但现阶段训练数据量有限,初始训练需要消耗大量算力和时间,容易出现过拟合现象
-
基于Transformer的飞机状态预测
-
作者:
王经纬
高艳鹍
宋澣兴
刘一非
来源:
计算机工程与设计
年份:
2024
文献类型 :
期刊
关键词:
深度学习
状态分类
气动力建模
多任务
大迎角
非定常气动力
时序预测
-
描述:
在非定常气动力下,为防止飞机进入危险状态,通过建模进行状态预测,是保障飞行安全的重要手段,传统方法建模过程复杂、工程化难度大且普适性不强。为更好解决大迎角下飞行状态预测,使用基于深度学习的时序序列
-
基于SW-YOLO模型的航空发动机叶片损伤实时检测
-
作者:
何宇豪
曹学国
刘信良
蒋浩坤
王静秋
来源:
推进技术
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
实时检测
叶片损伤
深度学习
目标检测
孔探检测
-
描述:
孔探检测技术是航空发动机叶片损伤检测的主要手段,但目前依赖人工操作,耗时耗力。本文提出了一个孔探视频检测的SW-YOLO模型,该模型包括输入端、主干网络、颈部网络、头部网络4个模块。首先,在主干网络加入了空间通道注意力模块(Spatial Channel-Convolutional Block Attention Module,SC-CBAM),有效避免位置信息丢失,提高目标边界回归能力,相较于YOLOv5,其平均精度均值■@0.5提高了5.4%。其次,在颈部网络对特征金字塔网络(Feature Pyramid Network,FPN)进行了改进,通过融合低层特征,扩大了模型感受野,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R-CNN,SSD模型的对比实验,结果表明SW-YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFFYOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷
-
不确定环境下的航空发动机装配线适应性调度方法
-
作者:
王怡琳
刘鹃
乔非
张家谔
来源:
控制与决策
年份:
2024
文献类型 :
期刊
关键词:
调度规则
航空发动机装配
适应性调度
深度学习
扰动识别
门控循环神经网络
-
描述:
航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等.针对不确定环境下的航空发动机装配线的调度问题,提出一种基于门控循环神经网络(GRU)的适应性调度方法.该调度方法包含扰动识别和调度规则调整两个部分:扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐近型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案.最后,以某航空发动机装配线为研究案例,对所提出适应性调度方法进行验证分析.对比实验结果表明,所提出方法能够有效提升装配线的设备利用率、日均生产率等性能.
-
基于改进Mask R-CNN的航空发动机保险丝实例分割方法
-
作者:
张凤飞
孙军华
来源:
计测技术
年份:
2025
文献类型 :
期刊
关键词:
特征提取
实例分割
卷积注意力模块
基于掩模区域的卷积神经网络
深度学习
动态蛇形卷积
航空发动机保险丝
-
描述:
基于改进Mask R-CNN的航空发动机保险丝实例分割方法
-
基于GSV-YOLO的飞机起落架缺陷检测方法研究
-
作者:
李博
许子威
钟飞
陈义华
来源:
电子测量技术
年份:
2025
文献类型 :
期刊
关键词:
YOLOv7
tiny
深度学习
Ghost卷积
飞机起落架
缺陷检测
-
描述:
基于GSV-YOLO的飞机起落架缺陷检测方法研究
-
航空发动机滑油磨粒浓度在线检测技术研究
-
作者:
侯媛媛
李江红
来源:
自动化技术与应用
年份:
2025
文献类型 :
期刊
关键词:
航空发动机滑油
YOLOv3模型
在线检测
深度学习
磨粒浓度
SER算法
-
描述:
航空发动机滑油磨粒浓度在线检测技术研究
-
基于U-Net的半航空瞬变电磁降噪方法及应用
-
作者:
刘东
冯浩
王用鑫
周小生
姚宇洪
孙怀凤
来源:
煤田地质与勘探
年份:
2025
文献类型 :
期刊
关键词:
半航空瞬变电磁法
复杂噪声
U
深度学习
Net
降噪
-
描述:
基于U-Net的半航空瞬变电磁降噪方法及应用
-
一种基于级联神经网络的飞机检测方法
-
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
-
描述:
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。