按文献类别分组
按栏目分组
关键词
基于自编码器的飞机类型识别方法
作者: 张朝柱   黄妤宁   来源: 无线电工程 年份: 2019 文献类型 : 期刊 关键词: 机器学习   梅尔倒谱系数   自编码器   飞机类型识别   联合特征提取  
描述: 针对人工监听识别飞机类型难度大的问题,提出了根据不同飞机发动机产生的不同噪声,通过特征提取,进而分类识别出飞机类型的一种方法。在梅尔倒谱系数(MFCC)算法特征提取的基础上,对提取的24维特征向量通过自编码器进行分类,对分类的准确率进行了仿真。实验结果表明,每一类声信号准确率均高于85%且平均识别准确率为95.98%;针对单类别实际飞机声信号的分类准确率较其他类别准确率差的问题,提出了通过小波包分解-MFCC联合特征提取对自编码器进行优化。实验结果表明,每一类声信号准确率均高于90%且平均准确率为97.74%。
基于机器学习的进离场航空器排序优化研究
作者: 张洪杨   刘子彤   赵世豪   刘媛媛   冯晓康   张召悦   来源: 科技创新与应用 年份: 2023 文献类型 : 期刊 关键词: 遗传算法   机器学习   终端区   先到先服务算法   进离场航空器排序  
描述: 为提高终端区运行效率,以进离场航空器作为研究对象,运用机器学习优化终端区航空器的进离场排序,以总延误时间最小为目标函数,综合考虑不同机型之间的尾流间隔,建立单跑道排序模型。运用遗传算法进行仿真实验并与先到先服务算法进行比较。得出遗传算法延误时间20.7 min,先到先服务算法延误时间49.15 min。结果表明,遗传算法相较于先到先服务算法有效缓解航空器延误,提高终端区空域运行效率。
机器学习在航空发动机排气温度预测中的应用研究
作者: 易文川   王兴   王翔   唐庆如   来源: 舰船电子工程 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   机器学习   性能评估   排气温度   预测算法  
描述: 排气温度是优化发动机性能和排放的关键参数,目标是在预测排气温度的基础上评估四种经典机器学习回归算法,即人工神经网络、随机森林、支持向量回归和门控循环单元。燃油流量、滑油压力和转速是模型输入,所有的机器学习模型在可接受的误差范围内预测了排气温度。相互比较时,门控循环单元的预测精度最高,但它通常需要高质量的无噪声数据;随机森林的精度最低,但需要的计算资源最少;支持向量回归在耗费高计算资源的前提下保证了较好的预测精度;人工神经网络是最合适的预测算法,但它存在繁琐的超参数调整过程。结果表明,经过良好训练的机器学习模型可以准确预测航空发动机排气温度,同时也有助于优化发动机性能、排放和寿命。
基于航空发动机工况的叶尖间隙智能预测方法
作者: 杨阳   张建超   项洋   陆海鹰   来源: 航空动力学报 年份: 2023 文献类型 : 期刊 关键词: 叶尖间隙   特征提取   机器学习   零维仿真   空气系统  
描述: 在实际工程中保持航空发动机高效运行的有效措施之一是应用叶尖间隙主动控制技术,其前提是建立精确的叶尖间隙模型以实现叶尖间隙预测。建立叶尖间隙的简化物理模型和数学模型,将叶尖间隙计算转化为热变形与传热问题,通过机器学习模型对发动机工况参数进行特征提取,利用有效特征求解传热问题的边界,从而实现基于发动机工况参数快速预测实时叶尖间隙。机器学习模型的十折交叉验证集的平均准确率为98.9%,叶尖间隙模型的验证误差为4.3%,得到了不同工况下的叶尖间隙计算结果和冷气流量大小变化规律,计算耗时小于0.03s。
机器学习在航空发动机排气温度预测中的应用研究
作者: 易文川   王兴   王翔   唐庆如   来源: 舰船电子工程 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   机器学习   性能评估   排气温度   预测算法  
描述: 排气温度是优化发动机性能和排放的关键参数,目标是在预测排气温度的基础上评估四种经典机器学习回归算法,即人工神经网络、随机森林、支持向量回归和门控循环单元。燃油流量、滑油压力和转速是模型输入,所有的机器学习模型在可接受的误差范围内预测了排气温度。相互比较时,门控循环单元的预测精度最高,但它通常需要高质量的无噪声数据;随机森林的精度最低,但需要的计算资源最少;支持向量回归在耗费高计算资源的前提下保证了较好的预测精度;人工神经网络是最合适的预测算法,但它存在繁琐的超参数调整过程。结果表明,经过良好训练的机器学习模型可以准确预测航空发动机排气温度,同时也有助于优化发动机性能、排放和寿命。
基于MI-SVR模型的航空旅客出行指数预测方法研究
作者: 熊红林   朱人杰   冀和   樊重俊   徐佩   来源: 控制与决策 年份: 2020 文献类型 : 期刊 关键词: 互信息   支持向量回归   机场运营管理   机器学习   k   航空旅客出行指数   均值聚类  
描述: 航空旅客出行的情况对民用航空机场建设与运营具有重大意义,针对航空旅客出行情况的预测研究,首先,定义一种航空旅客出行指数,通过K-means聚类方法对航空旅客出行指数进行分级;其次,基于互信息与相关性原理,选取航空旅客出行情况关键影响特征因子,提出一种基于关键影响因子与航空旅客出行指数互信息的MI-SVR(Mutual Information-Support Vector Regression)机器学习预测模型;最后,通过上海机场旅客出行指数预测实验对模型进行验证,实验结果显示MI-SVR模型具有可行性与有效性,同时,相比传统的预测模型预测效果更优.此外,实验结果也表明各模型基于互信息引入影响因子进行预测相对仅基于历史数据进行独立预测误差更小.本研究结果有助于提升机场建设及运营管理水平,同时,也可辅助人们选择通过民航交通方式出行的时段.
航空发动机信号采集处理及故障检测方法研究
作者: 刘伟   周卓峰   黄新阳   来源: 内燃机与配件 年份: 2023 文献类型 : 期刊 关键词: 集成学习   滚动轴承   特征提取   机器学习   故障诊断   旋转机械  
描述: 的方式分别学习数据在时域、频域、时频域上的深层特征进行综合诊断。经实验验证,EDNN模型在噪声环境、变载环境下的平均准确率分别达到了98%和97%,具有比SVM、1D-CNN、DBN等模型更强的抗噪与变负载适应性能力。
基于典型机器学习算法的航空发动机价格估算模型研究
作者: 刘子源   张大维   高星   来源: 中国电子科学研究院学报 年份: 2022 文献类型 : 期刊 关键词: 机器学习   价格估算模型   AdaBoost算法   决策树算法   KNN算法   随机森林算法   涡轴、涡桨发动机  
描述: 航空发动机的研制具有难度大、风险高、周期长、经费多的特点,需要在论证阶段对订购价格进行科学的估算,设定合理的目标。文中收集部分涡轴、涡桨发动机的性能指标、物理参数及订购价格等数据,运用典型机器学习方法建立价格估算模型。通过评估可以看出,建立的模型具有较好的估算效果,对测试样本的预测误差在10%以内,满足论证阶段的估算要求,可为装备的发展决策提供有效支撑。
基于特征提取的航空发动机滚动轴承故障诊断
作者: 周卓峰   刘伟   喻鸣   来源: 内燃机与配件 年份: 2023 文献类型 : 期刊 关键词: 滚动轴承   特征提取   深度信念网络   机器学习   故障诊断   旋转机械  
描述: 航空发动机振动信号复杂,数据量大,其机械系统滚动轴承故障诊断困难重重。在振动信号处理及故障检测领域,利用机器学习强大的自主学习能力在旋转机械故障的诊断方面得到了越来越多的应用。本文提出一种基于特征提取的滚动轴承故障诊断方法,通过特征提取获得更全面数据信息,再将深度信念网络模型用于信号识别,全方位反映航空发动机滚动轴承的运行状态。经实验验证,DBN模型在噪声环境下的平均准确率可达99%以上,具有较强的抗噪能力。
基于特征提取的航空发动机滚动轴承故障诊断
作者: 周卓峰   刘伟   喻鸣   来源: 内燃机与配件 年份: 2023 文献类型 : 期刊 关键词: 滚动轴承   特征提取   深度信念网络   机器学习   故障诊断   旋转机械  
描述: 航空发动机振动信号复杂,数据量大,其机械系统滚动轴承故障诊断困难重重。在振动信号处理及故障检测领域,利用机器学习强大的自主学习能力在旋转机械故障的诊断方面得到了越来越多的应用。本文提出一种基于特征提取的滚动轴承故障诊断方法,通过特征提取获得更全面数据信息,再将深度信念网络模型用于信号识别,全方位反映航空发动机滚动轴承的运行状态。经实验验证,DBN模型在噪声环境下的平均准确率可达99%以上,具有较强的抗噪能力。
< 1 2 3 4 ... 17 18 19
Rss订阅