首页>
根据【关键词:关键点检测,深度学习,双目立体视觉,缺陷检测 】搜索到相关结果 85 条
不确定环境下的航空发动机装配线适应性调度方法
作者:
王怡琳
刘鹃
乔非
张家谔
来源:
控制与决策
年份:
2023
文献类型 :
期刊
关键词:
调度规则
航空发动机装配
适应性调度
深度学习
扰动识别
门控循环神经网络
描述:
航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等。针对不确定环境下的航空发动机装配线的调度问题,本文提出一种基于门控循环神经网络(Gate Recurrent Unit, GRU)的适应性调度方法。该调度方法包含扰动识别和调度规则调整两个部分。扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐进型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案。最后,以某航空发动机装配线为研究案例,对本文提出的适应性调度方法进行验证分析,对比实验结果表明,本方法能够有效提升装配线的设备利用率、日均生产率等性能.
基于卷积LSTM模型的航空器轨迹预测
作者:
刘龙庚
翟俐民
韩云祥
来源:
计算机工程与设计
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
时间序列
空管大数据
航迹聚类
深度学习
智能交通
航迹预测
描述:
采集空管大数据,根据空管大数据的特点,对数据进行数据融合,利用改进的聚类算法处理航迹数据,对得到的各类航迹数据分别构建模型,提高模型的预测精度。分别构建Stack LSTM和基于卷积LSTM的航空器轨迹预测模型,以真实雷达数据为例进行仿真实验,对仿真结果进行对比,其结果表明,基于卷积LSTM的航空器轨迹预测模型可以将预测的均方根误差控制在400s内,验证了预测模型可以实现航空器轨迹的精确预测。
一种基于级联神经网络的飞机检测方法
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
描述:
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
基于深度学习的航司航空发动机智能损伤检测一体化解决方案
作者:
王锦申
黄旭
万夕里
来源:
航空维修与工程
年份:
2022
文献类型 :
期刊
关键词:
损伤检测
编码器
发动机
目标检测
深度学习
一体化解决方案
神经网络
在线计数
孔探检测
描述:
航空发动机作为飞机的关键部件,其损伤诊断和维护是保障飞机飞行安全的核心任务。目前,通过人工的定期孔探检测开展检查和维护工作,既费时又容易出错。为此,本文给出了融合上下文编码的神经网络深度学习框架、深度融合网络、目标检测和追踪算法等三种深度学习方法,以实现对大型航司发动机的损伤进行识别、检测、追踪、在线计数和孔探报告自动生成。实现结果表明这些方法对减轻劳动强度、提高生产效率和提高检测精度具有实际的应用价值,对保证发动机适航具有重要意义。
基于统一网络架构的多模态航空影像质量评价研究
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。