按文献类别分组
按栏目分组
关键词
基于LabVIEW Vision的航空炮弹缺陷检测方案设计
作者: 蔺佳哲   王茜   耿广龙   来源: 火力与指挥控制 年份: 2018 文献类型 : 期刊 关键词: Vision   航空炮弹   LabVIEW   缺陷检测   虚拟仪器技术  
描述: 航空炮弹在勤务保障过程中,容易受到环境和外力的破坏而造成表面的损伤,影响正常的飞行训练甚至危及载机安全。采用虚拟仪器平台提供的LabVIEW Vision视觉开发工具包,结合灰度直方图筛选、Saturation分量图像提取、灰度形态学Erode和Dilate变换以及最大熵阈值分割的图像处理等技术手段,对待测航空炮弹图像进行分析处理,精确判断炮弹锈蚀和划痕缺陷问题。试验结果表明,系统具有较高的可行性和可靠性,可以实现炮弹缺陷的快速鲁棒检测,提高了炮弹检测的效率和精度,对于提升航空弹药保障信息化、智能化水平具有重要意义。
超声红外热像技术发展现状及其在航空材料缺陷检测中的应用
作者: 冯辅周   朱俊臻   李志农   来源: 航空制造技术 年份: 2023 文献类型 : 期刊 关键词: 超声红外热像   无损检测   主动热像   航空材料   缺陷检测  
描述: 超声红外热像技术兼具缺陷定位精准、热像信噪比高、材料适用范围广等特点,在航空材料检测方面已有不俗表现,主要应用于发动机叶片、起落架、机翼、蜂窝夹层等关键部件和结构的缺陷检测。在简要介绍超声红外热像技术原理与系统组成的基础上,从振动特性、生热特性、仿真建模、检测条件、热像处理与缺陷识别、缺陷可检测性和应用试验7个方面概括其主要发展历程,总结技术特点。重点针对航空金属结构材料缺陷和复合材料缺陷检测的应用进行了详细论述。归纳了超声红外热像技术的未来发展趋势,为其在航空材料检测方面的研究应用提供一定的参考借鉴。
基于深度卷积神经网络的航空器检测与识别
作者: 俞汝劼   杨贞   熊惠霖   来源: 计算机应用 年份: 2017 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   目标检测识别   航空器检测  
描述: %的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。
基于深度学习的航空发动机剩余使用寿命预测研究
作者: 温海茹   来源: 内燃机与配件 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   深度学习   剩余使用寿命预测  
描述: 随着深度学习不断的发展,航空发动机成为近年来的研究热点,其寿命预测的研究也受到了研究学者的关注。本文主要介绍航空发动机的剩余使用寿命预测背景,数据获取过程及基于深度学习的剩余使用寿命的预测方法,以及深度学习在航空发动方面预测的难点和发展趋势。
基于深度学习的航空发动机剩余使用寿命预测研究
作者: 温海茹   来源: 内燃机与配件 年份: 2020 文献类型 : 期刊 关键词: 航空发动机   深度学习   剩余使用寿命预测  
描述: 随着深度学习不断的发展,航空发动机成为近年来的研究热点,其寿命预测的研究也受到了研究学者的关注。本文主要介绍航空发动机的剩余使用寿命预测背景,数据获取过程及基于深度学习的剩余使用寿命的预测方法,以及深度学习在航空发动方面预测的难点和发展趋势。
基于深度学习的航空器异常飞行状态识别
作者: 吴奇   储银雪   来源: 民用飞机设计与研究 年份: 2018 文献类型 : 期刊 关键词: 飞行状态识别   深度学习   高斯过程  
描述: 飞行设备快速存取记录仪(Quick Access Recorder,以下简称QAR)保留了原始航班各类重要飞行参数在内的航行信息,使研究分析航空器实时状况和保障飞行质量成为可能。针对QAR数据高维大样本的特点,在如今大数据背景下,除了传统机理建模分析航空器飞行状态外,采用深度学习的方式建立基于数据驱动的航空器飞行状态识别模型,理论与实用意义兼具。通过对真实QAR飞行数据的研究,开发了基于深度稀疏受限玻尔兹曼机的异常飞行状态识别程序。首先利用小波降噪技术对原始飞行数据进行预处理清洗,在一系列典型飞行参数上提取经典时域特征以及小波奇异熵等信息熵特征构成特征集。在此基础上,分别利用经典的线性主元分析技术和深度稀疏玻尔兹曼机对特征集进行有效降维,最后采用四折交叉验证方式,通过高斯过程分类器实现对飞行状态的辨识。实验结果显示,基于深度受限玻尔兹曼机-高斯过程分类的飞行状态识别具有较高分类准确性。
基于多分辨率遥感影像的飞机检测研究
作者: 侯宇青阳   全吉成   魏湧明   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 显著性提取   遥感影像   目标检测   深度学习  
描述: 从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行图像目标区域提取,解决了不同分辨率的大尺寸遥感影像中飞机检测率低的问题,通过与原始检测算法和其他图像处理方法对比验证了本文设计算法的有效性,在检测准确率和检测速度上均得到明显提升。
基于卷积神经网络的遥感图像飞机目标识别
作者: 晁安娜   刘坤   来源: 微型机与应用 年份: 2018 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   飞机识别   深度学习  
描述: 遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用卷积神经网络对飞机目标进行识别,避免了在特征提取过程中信息的丢失,提高了识别率。实验结果证明了该算法在遥感图像飞机目标识别中的可行性,能克服尺度变化及目标姿态变化等因素的影响。同时提出的算法较传统CNN、BP神经网络和支持向量机(SVM)方法具有更好的识别效果,鲁棒性更强。
航空轮胎有限元分析
作者: 刘坤   苏彤   王典   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   模糊不变   目标识别  
描述: 由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural Network)的目标识别方法。与仅优化多项式逻辑回归目标的传统CNN(Convolutional Neural Network)模型的训练不同,BICNN引入和学习一个新的模糊不变层改善模糊目标的识别率,提高目标识别的鲁棒性。首先,BICNN通过增加模糊不变约束项及正则化来优化本文提出的模糊不变目标函数进行训练;其次,通过减小模糊不变目标函数值来规定训练样本在模糊之前和之后的特征映射相一致,最终实现模糊不变性。测试结果表明验证,BICNN改善了因模糊造成识别率降低的问题,进而提升运动模糊图像的识别率。
某型飞机腹板裂纹分析及改装设计
作者: 彭军   郭晨阳   张勇   张赟   杨欣毅   来源: 系统仿真技术 年份: 2018 文献类型 : 期刊 关键词: 航空发动机   故障诊断   深度学习   神经网络  
描述: 引入深度学习理论,利用深度置信网络算法对由仿真软件生成的航空发动机部件性能衰退故障数据进行求解。与反向传播(BP)神经网络算法和径向基函数(RBF)神经网络算法的比较结果表明:虽然深度学习训练耗费较长时间,但是深度置信网络算法结构克服了浅层网络算法结构的不足,其计算结果能够达到更高诊断精度,并具有较好的抗噪性能。
< 1 2 3 ... 7 8 9
Rss订阅