描述:
多源影像匹配主要受到非线性强度差异、对比度差异及局部区域结构特征不显著等问题的干扰,而机载激光雷达(light detection and ranging,LiDAR)深度图与航空影像由于纹理特征之间的显著差异导致部分结构特征缺失更为严重,所造成的相位极值突变进一步增加了匹配难度。因此,提出一种基于相位均匀卷积描述子的方法来实现LiDAR深度图与航空影像之间的高效匹配。在影像特征匹配阶段,首先对相位一致性模型进行扩展,构造相位均匀能量卷积方程,求解得到均匀卷积序列与相位最大标签图,建立一种相位均匀能量卷积直方图(histogram of phase mean energy convolution,HPMEC);然后采用最近邻匹配算法完成初始匹配,并利用快速边缘化样本共识进行粗差剔除;最后基于线程池并行策略,通过划分重叠格网对影像进行分块匹配。将多组具有不同地物覆盖类型的LiDAR深度图与航空影像作为数据集,分别与位置尺度方向-尺度不变特征转换(position scale orientation-scale invariant feature transform,PSO-SIFT)、Log-Gabor直方图描述(Log-Gabor histogram descriptor,LGHD)、辐射变化强度特征转换(radiation-variation insensitive feature transform,RIFT)和绝对相位一致性梯度直方图(histogram of absolute phase consistency gradients,HAPCG)等方法进行对比实验。结果表明,在LiDAR深度图与航空影像匹配中,HPMEC方法性能明显优于其他4种方法,其平均运行时间是PSO-SIFT的13.3倍、LGHD的10.9倍、HAPCG的10.4倍和RIFT的7.0倍;平均正确匹配点数显著高于其他4种方法;均方根误差在1.9像素以内,略优于其他4种方法。HPMEC方法在LiDAR深度图与航空影像中能够实现高效、稳健匹配。
描述:
对航空发动机进行实时状态监测与健康管理可以有效降低发动机故障风险,确保飞机飞行安全。准确预测航空发动机的剩余寿命是有效监测发动机运行状态的一种重要手段,其中长短期记忆(Long-Short Term Memory,LSTM)网络常被使用。但由于航空发动机复杂的机械结构与运行模式,使用传统的LSTM网络对航空发动机的剩余寿命进行单次预测后,所得预测结果的准确率不足以满足其寿命预测的精度要求。基于LSTM网络的广泛使用以及它对时间序列数据的有效预测能力,并考虑到采用多级预测的方法能够有效降低预测误差,提出了一种新型的可自动扩展的长短期记忆(AutomaticallyExpandableLSTM,AELSTM)预测模型。AELSTM模型依托多个子模块逐级连接的网络结构,不断地提取前一级模块的输出误差作为后一级模块的训练值,形成了误差的多级预测机制,有效降低了模型的预测误差,提升了预测结果的准确性。最后,基于美国国家航空航天局发布的C-MAPSS数据集的四个子集,对AELSTM模型的预测效果进行了测试。实验结果表明,与传统的LSTM网络相比,AELSTM模型在四个子集上的均方根误差平均减少了95.44%,同时它的预测效果也优于现有的一些先进算法。实验充分验证了AELSTM模型在提升航空发动机剩余寿命预测准确度方面的有效性与优势。