首页>
根据【关键词:YOLO,深度学习,目标检测,叶片凸台,胶囊网络】搜索到相关结果 231 条
-
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
-
作者:
钟欣童
来源:
青岛科技大学
年份:
2021
文献类型 :
学位论文
关键词:
YOLO
深度学习
目标检测
叶片凸台
胶囊网络
-
描述:
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
-
基于剪枝和去噪的航空发动机故障图像识别与预测
-
作者:
傅荣春雪
刘君强
冯潇楠
余卓倩
来源:
航空计算技术
年份:
2023
文献类型 :
期刊
关键词:
YOLO
图像去噪
目标检测
孔探图像
剪枝算法
-
描述:
航空发动机叶片作为航空器重要的零件,其健康状况直接关系到航班的运行安全。叶片由于工作环境恶劣很容易产生裂纹、掉块、烧灼等损伤,目前基于孔探技术的叶片损伤检测以人工为主,检测结果在很大程度上受到人为因素的影响。因此,实现叶片损伤的自动识别及测量对于减轻劳动强度和提高检测精度都有实际的应用价值。首先选择PRIDnet图像去噪算法对原始孔探图像进行预处理,按照训练精度和训练速度两个指标对传统目标检测模型进行通道剪枝和微调。数据集采用国内某航空公司获取到CFM56型发动机在实际运营后机务人员所拍摄的孔探图像,实验结果表明,相比于原始目标检测YOLOv5算法和未经图像预处理的目标检测模型,本方法对航空发动机孔探图像内损伤的检测精度提高4%~10%,在检测效率上提高6%~20%。
-
基于MPSoC的航空图像目标检测技术研究
-
作者:
任彬
来源:
中国科学院大学(中国科学院长春光学精密机械与物理研究所)
年份:
2021
文献类型 :
学位论文
关键词:
航空图像
YOLO
MPSoC
目标检测
模型压缩
-
描述:
基于MPSoC的航空图像目标检测技术研究
-
基于卷积神经网络的航空遥感图像目标检测研究
-
作者:
宋琦
来源:
西安电子科技大学
年份:
2020
文献类型 :
学位论文
关键词:
YOLO
R
CNN
卷积神经网络
目标检测
航空遥感图像
-
描述:
基于卷积神经网络的航空遥感图像目标检测研究
-
基于多分辨率遥感影像的飞机检测研究
-
作者:
侯宇青阳
全吉成
魏湧明
来源:
激光与光电子学进展
年份:
2018
文献类型 :
期刊
关键词:
显著性提取
遥感影像
目标检测
深度学习
-
描述:
从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行图像目标区域提取,解决了不同分辨率的大尺寸遥感影像中飞机检测率低的问题,通过与原始检测算法和其他图像处理方法对比验证了本文设计算法的有效性,在检测准确率和检测速度上均得到明显提升。
-
基于CenterNet的航空遥感图像目标检测
-
作者:
杨曦中
高冠鸿
熊智
张玲
来源:
航空电子技术
年份:
2022
文献类型 :
期刊
关键词:
目标检测
深度学习
神经网络
CenterNet
-
描述:
为实现高精度的航空图像目标检测,将Anchor free的目标检测算法CenterNet应用到检测中,同时使用Resnet50主干网络,并引入CIoU损失替代原有损失函数对网络模型做出了改进。改进后的算法在RSOD与DIOR数据集上进行测试,结果显示在保证网络轻量化的前提下检测精度有明显的提高,证明了算法在航空目标检测方面的可行性与准确性。
-
基于深度学习的遥感影像飞机检测方法研究
-
作者:
谢奇芳
来源:
中国地质大学(北京)
年份:
2019
文献类型 :
学位论文
关键词:
高分辨率遥感影像
卷积神经网络
深度学习
目标检测
-
描述:
基于深度学习的遥感影像飞机检测方法研究
-
基于注意力机制的航空图像旋转框目标检测
-
作者:
常洪彬
李文举
李文辉
来源:
吉林大学学报(理学版)
年份:
2022
文献类型 :
期刊
关键词:
航空图像
注意力机制
目标检测
深度学习
-
描述:
针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.
-
基于深度学习的航空遥感图像目标检测算法研究
-
作者:
常洪彬
来源:
吉林大学
年份:
2022
文献类型 :
学位论文
关键词:
遥感图像
注意力机制
深度学习
目标检测
-
描述:
基于深度学习的航空遥感图像目标检测算法研究
-
基于视觉引导的民航维修工具抓取检测方法研究
-
作者:
左奎军
来源:
南京航空航天大学
年份:
2020
文献类型 :
学位论文
关键词:
图像匹配
YOLO
机器人
深度学习
抓取检测
民航维修
视觉引导
-
描述:
基于视觉引导的民航维修工具抓取检测方法研究