首页>
根据【关键词:航空发动机,实时检测,叶片损伤,深度学习,目标检测,孔探检测】搜索到相关结果 2893 条
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
-
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
-
作者:
高峰
曲建岭
袁涛
高峰娟
来源:
电子测量与仪器学报
年份:
2019
文献类型 :
期刊
关键词:
航空发动机
长短时记忆网络
寿命预测
深度学习
差分时域特征
-
描述:
实现航空发动机剩余寿命的准确预测对于保证飞行安全和提高维修效率具有重要意义,但现有的预测算法往往只是浅层结构,且对各传感器参数之间的相互关系缺乏关联性考虑,限制了对发动机参数信息的深度挖掘。在
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
-
作者:
高峰
曲建岭
袁涛
高峰娟
来源:
电子测量与仪器学报
年份:
2019
文献类型 :
期刊
关键词:
航空发动机
长短时记忆网络
寿命预测
深度学习
差分时域特征
-
描述:
实现航空发动机剩余寿命的准确预测对于保证飞行安全和提高维修效率具有重要意义,但现有的预测算法往往只是浅层结构,且对各传感器参数之间的相互关系缺乏关联性考虑,限制了对发动机参数信息的深度挖掘。在
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
基于深度学习的航空发动机磨损部位识别方法
-
作者:
苗慧慧
曹桂松
孙智君
康玉祥
马佳丽
陈果
来源:
润滑与密封
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
一维卷积残差网络
能谱分析
深度学习
磨损
-
描述:
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
-
基于时空特征的航空发动机剩余使用寿命预测
-
作者:
徐震震
薛林
马凯
杨玉迪
来源:
电子测量技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
深度学习
时间特征
剩余寿命预测
空间特征
-
描述:
航空发动机作为一种高精密机械部件,对飞机性能和可靠性有重要影响。准确的剩余寿命预测可以降低维修成本,减少安全事故的发生。现有的预测方法只关注传感器数据之间的时间关系,忽略了传感器之间的空间关系。本文
-
-
作者:
秦子轩
张晓东
白广芝
任先聪
来源:
航空发动机
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
剩余可用寿命
深度学习
多头注意力机制
多尺度卷积双向长短期记忆网络
-
描述:
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
<
1
2
3
...
6
7
8
...
288
289
290
>