关键词
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2020 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 基于深度学习的光学遥感图像飞机检测算法
基于深度学习的航空传感器故障诊断方法
作者: 郑晓飞   郭创   姚斌   冯华鑫   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 信号重构   故障诊断   深度学习   航空传感器   深度置信网络   故障隔离  
描述: 为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信网络隐层节点数选取的递推公式,构建深度置信网络状态观测器。离线训练时,利用飞行数据训练深度置信网络观测器。在线诊断时,通过比较观测器输出值与实际输出值判断故障类型,并给出3种故障隔离与信号重构方法。仿真结果表明,与BP神经网络观测器相比,该方法能够快速准确地进行故障诊断与隔离,并且完成信号重构。
基于SW/YOLO模型的航空发动机叶片损伤实时检测
作者: 何宇豪   曹学国   刘信良   蒋浩坤   王静秋   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   实时检测   叶片损伤   深度学习   目标检测   孔探检测  
描述: ,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R/CNN,SSD模型的对比实验,结果表明SW/YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: ,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91
飞机结构健康监测技术发展研究
作者: 刘雪蓉     曹贺     张宝珍   来源: 计测技术 年份: 2024 文献类型 : 期刊 关键词: 结构预测与健康管理   数字孪生   先进传感器   深度学习   飞机   结构健康监测  
描述: Fighter, JSF)上的典型应用。指出飞机结构健康监测技术正向智能化方向发展;未来需要重点研究传感器网络的智能诊断技术、复杂环境下的SHM技术、基于结构健康监测的健康管理技术、智能材料/结构健康监测技术,并将深度学习、数字孪生等前沿技术应用于航空领域,以推动我国飞机结构健康监测技术发展。
基于迁移学习和改进Faster-RCNN遥感影像飞机目标检测
作者: 周绍鸿     方新建     刘鑫怡     张潆丹     严盛   来源: 机电工程技术 年份: 2024 文献类型 : 期刊 关键词: 遥感影像   目标检测   RCNN   深度学习   Faster   迁移学习  
描述: ResNet50替代原Faster-RCNN的VGG16特征提取网络,更好地利用深层次的语义信息,在此基础上结合FPN网络,并对原Faster-RCNN的9种锚框增加为15种锚框,通过融合多尺度特征图以
基于Transformer的飞机状态预测
作者: 王经纬     高艳鹍     宋澣兴     刘一非   来源: 计算机工程与设计 年份: 2024 文献类型 : 期刊 关键词: 深度学习   状态分类   气动力建模   多任务   大迎角   非定常气动力   时序预测  
描述: 在非定常气动力下,为防止飞机进入危险状态,通过建模进行状态预测,是保障飞行安全的重要手段,传统方法建模过程复杂、工程化难度大且普适性不强。为更好解决大迎角下飞行状态预测,使用基于深度学习的时序
基于SW-YOLO模型的航空发动机叶片损伤实时检测
作者: 何宇豪     曹学国     刘信良     蒋浩坤     王静秋   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   实时检测   叶片损伤   深度学习   目标检测   孔探检测  
描述: 较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R-CNN,SSD模型的对比实验,结果表明SW-YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢     肖洪     吴丁毅   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: ,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91
不确定环境下的航空发动机装配线适应性调度方法
作者: 王怡琳     刘鹃     乔非     张家谔   来源: 控制与决策 年份: 2024 文献类型 : 期刊 关键词: 调度规则   航空发动机装配   适应性调度   深度学习   扰动识别   门控循环神经网络  
描述: 航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等.针对不确定环境下的航空发动机装配线的调度问题,提出一种基于门控循环神经网络(GRU)的适应性调度方法.该调度方法包含扰动识别和调度规则调整两个部分:扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐近型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案.最后,以某航空发动机装配线为研究案例,对所提出适应性调度方法进行验证分析.对比实验结果表明,所提出方法能够有效提升装配线的设备利用率、日均生产率等性能.
< 1 2 3 ... 15 16 17
Rss订阅