首页>
根据【关键词:注意力机制,特征提取,PyQt5,深度学习,目标检测】搜索到相关结果 13 条
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
多源数据融合的民航发动机修后性能预测
-
作者:
谭治学
钟诗胜
林琳
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
航空发动机
多源数据融合
发动机维修决策
修后性能预测
-
描述:
针对民航发动机修后排气温度裕度预测过程中的多源异构数据融合问题,提出了卷积自编码器与极端梯度提升模型结合的方法。利用所提出的条件熵增长因子规整发动机修前多元传感器参数序列中的参数排序,采用卷积自编码器提取规整后的参数序列和维修工作范围的数据特征,并将其与发动机使用时间信息组成合成特征以训练极端梯度提升模型,从而预测发动机修后性能并评估各影响因素的重要程度。经发动机机队维修案例验证,所提方法预测精度高于单维参数序列预测方法,对发动机修后排气温度的平均相对预测误差不高于8. 3%。
-
多源数据融合的民航发动机修后性能预测
-
作者:
谭治学
钟诗胜
林琳
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
航空发动机
多源数据融合
发动机维修决策
修后性能预测
-
描述:
针对民航发动机修后排气温度裕度预测过程中的多源异构数据融合问题,提出了卷积自编码器与极端梯度提升模型结合的方法。利用所提出的条件熵增长因子规整发动机修前多元传感器参数序列中的参数排序,采用卷积自编码器提取规整后的参数序列和维修工作范围的数据特征,并将其与发动机使用时间信息组成合成特征以训练极端梯度提升模型,从而预测发动机修后性能并评估各影响因素的重要程度。经发动机机队维修案例验证,所提方法预测精度高于单维参数序列预测方法,对发动机修后排气温度的平均相对预测误差不高于8. 3%。
-
基于Trans/Attention的飞行区航空器监视数据融合方法
-
作者:
王兴隆
尹昊
丁俊峰
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
场面监视雷达
注意力机制
Transformer
数据融合
广播式自动相关监视
-
描述:
特征提取,然后通过注意力机制对不同监视源赋予权重值,最后经过全连接网络进行回归计算,以获得最终的融合结果。选取场面监视雷达和广播式自动相关监视系统的监视数据作为融合源,多点定位数据作为真实标签,实验
-
基于Trans/Attention的飞行区航空器监视数据融合方法
-
作者:
王兴隆
尹昊
丁俊峰
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
场面监视雷达
注意力机制
Transformer
数据融合
广播式自动相关监视
-
描述:
特征提取,然后通过注意力机制对不同监视源赋予权重值,最后经过全连接网络进行回归计算,以获得最终的融合结果。选取场面监视雷达和广播式自动相关监视系统的监视数据作为融合源,多点定位数据作为真实标签,实验
-
航空发动机润滑系统故障知识图谱构建及应用
-
作者:
吴闯
张亮
唐希浪
崔利杰
谢小月
来源:
北京航空航天大学学报
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
深度学习
润滑系统
知识问答
知识图谱
-
描述:
故障知识图谱本体概念的基础上,采用双向长短期记忆(BiLSTM)神经网络和条件随机场(CRF)等深度学习技术实现知识自主抽取,并基于余弦距离和Jaccard相关系数法进行多源异构故障知识的融合。同时,基于
-
遥感图像飞机目标高效搜检深度学习优化算法
-
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
-
描述:
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。