首页>
根据【关键词:支持向量机,机动动作识别,特征提取,无监督学习,正则化自动编码器】搜索到相关结果 56 条
-
基于深度学习的航空发动机异常检测方法研究
-
作者:
张光耀
来源:
哈尔滨工业大学
年份:
2018
文献类型 :
学位论文
关键词:
航空发动机
特征提取
深度学习
健康管理
异常检测
-
描述:
基于深度学习的航空发动机异常检测方法研究
-
基于数据驱动的航空发动机故障诊断及性能参数预测
-
作者:
蒋继鹏
来源:
南京航空航天大学
年份:
2018
文献类型 :
学位论文
关键词:
航空发动机
性能参数预测
特征提取
故障诊断
核极限学习机
-
描述:
基于数据驱动的航空发动机故障诊断及性能参数预测
-
火车票面信息识别算法研究
-
作者:
孔祥倩
来源:
内蒙古大学
年份:
2018
文献类型 :
学位论文
关键词:
特征提取
字符分割
OCR技术
火车票
单字识别
-
描述:
火车票面信息识别算法研究
-
大型航空曲面零构件面形激光辅助视觉测量关键技术
-
作者:
张洋
来源:
大连理工大学
年份:
2018
文献类型 :
学位论文
关键词:
复合式测量
双目视觉
特征提取
大型零件
三维标定
-
描述:
大型航空曲面零构件面形激光辅助视觉测量关键技术
-
基于深度信念网络的航空发动机维修等级决策
-
作者:
车畅畅
王华伟
刘伟
来源:
航空动力学报
年份:
2018
文献类型 :
期刊
关键词:
运行安全
特征提取
维修等级决策
深度信念网络
状态监控
-
描述:
和维修等级数据作为实例进行验证,结果显示:该模型能够通过构建多层网络结构挖掘出样本的更深层次信息,在分类能力、决策准确性方面优于传统神经网络,有较强的特征提取能力,对维修等级分类有较高的正确率,能得出更准确的维修等级决策结果,避免因维修等级误判而带来不必要的损失。
-
基于深度信念网络的航空发动机维修等级决策
-
作者:
车畅畅
王华伟
刘伟
来源:
航空动力学报
年份:
2018
文献类型 :
期刊
关键词:
运行安全
特征提取
维修等级决策
深度信念网络
状态监控
-
描述:
和维修等级数据作为实例进行验证,结果显示:该模型能够通过构建多层网络结构挖掘出样本的更深层次信息,在分类能力、决策准确性方面优于传统神经网络,有较强的特征提取能力,对维修等级分类有较高的正确率,能得出更准确的维修等级决策结果,避免因维修等级误判而带来不必要的损失。
-
航空滚动轴承振动特征的故障灵敏度分析与融合技术
-
作者:
林桐
陈果
张全德
王洪伟
陈立波
来源:
航空动力学报
年份:
2018
文献类型 :
期刊
关键词:
特征提取
灵敏度分析
滚动轴承
特征融合
状态评估
-
描述:
针对工程中航空滚动轴承实时状态监测的需要,提出了基于标准化欧氏距离的多特征融合评估方法。首先,进行了航空滚动轴承故障模拟试验,引入了故障灵敏度的定量评价指标,对融合前后特征的故障灵敏度进行了分析;在此基础上,将所提方法与主分量分析、支持向量数据描述和支持向量分布估计方法相比较;最后,进行了轴承疲劳加速试验,将所提融合方法应用于航空滚动轴承状态监测。试验表明:相比于主分量分析、支持向量数据描述和支持向量分布估计,基于标准化欧氏距离的融合值的故障灵敏度更高;其对不同类型、不同阶段的航空滚动轴承故障更加灵敏,相比于有效值更适合作为航空滚动轴承状态监测的指标。
-
分数阶Fourier域低分辨雷达飞机回波的分形特性分析与目标分类
-
作者:
李秋生
谢晓春
朱红
吴倩媛
来源:
计算机应用研究
年份:
2018
文献类型 :
期刊
关键词:
特征提取
低分辨雷达
分形
分数阶Fourier变换
目标分类
-
描述:
常规低分辨雷达体制下的目标分类与辨识是雷达目标识别领域的一个研究难点。研究表明,地、海、空等雷达杂波具有分形特性,不同类型目标会对回波分形特性产生不同的影响,但在强杂波背景下,回波的分形特性更多地表现为杂波的特性。作为一种非平稳信号分析工具,分数阶Fourier变换可以有效地获取目标回波信号的细节特征并充分抑制杂波,且具有快速算法。为此,立足于分形及其相关理论,拟从分数阶Fourier域对常规雷达飞机目标回波的分形特性进行分析,估计和分析其分形参数,并对分数阶Fourier域回波分形特征在飞机目标分类中的应用进行探讨。研究结果表明,在最优变换阶数下,分数阶Fourier域飞机目标回波具有显著的分形特性,且充分反映了目标的特性,分形测度分析可以揭示回波的动力学演化机制,且最优变换域回波分形特征可以有效用于飞机目标的分类和识别。
-
航空滚动轴承振动特征的故障灵敏度分析与融合技术
-
作者:
林桐
陈果
张全德
王洪伟
陈立波
来源:
航空动力学报
年份:
2018
文献类型 :
期刊
关键词:
特征提取
灵敏度分析
滚动轴承
特征融合
状态评估
-
描述:
针对工程中航空滚动轴承实时状态监测的需要,提出了基于标准化欧氏距离的多特征融合评估方法。首先,进行了航空滚动轴承故障模拟试验,引入了故障灵敏度的定量评价指标,对融合前后特征的故障灵敏度进行了分析;在此基础上,将所提方法与主分量分析、支持向量数据描述和支持向量分布估计方法相比较;最后,进行了轴承疲劳加速试验,将所提融合方法应用于航空滚动轴承状态监测。试验表明:相比于主分量分析、支持向量数据描述和支持向量分布估计,基于标准化欧氏距离的融合值的故障灵敏度更高;其对不同类型、不同阶段的航空滚动轴承故障更加灵敏,相比于有效值更适合作为航空滚动轴承状态监测的指标。
-
分数阶Fourier域低分辨雷达飞机回波的分形特性分析与目标分类
-
作者:
李秋生
谢晓春
朱红
吴倩媛
来源:
计算机应用研究
年份:
2018
文献类型 :
期刊
关键词:
特征提取
低分辨雷达
分形
分数阶Fourier变换
目标分类
-
描述:
常规低分辨雷达体制下的目标分类与辨识是雷达目标识别领域的一个研究难点。研究表明,地、海、空等雷达杂波具有分形特性,不同类型目标会对回波分形特性产生不同的影响,但在强杂波背景下,回波的分形特性更多地表现为杂波的特性。作为一种非平稳信号分析工具,分数阶Fourier变换可以有效地获取目标回波信号的细节特征并充分抑制杂波,且具有快速算法。为此,立足于分形及其相关理论,拟从分数阶Fourier域对常规雷达飞机目标回波的分形特性进行分析,估计和分析其分形参数,并对分数阶Fourier域回波分形特征在飞机目标分类中的应用进行探讨。研究结果表明,在最优变换阶数下,分数阶Fourier域飞机目标回波具有显著的分形特性,且充分反映了目标的特性,分形测度分析可以揭示回波的动力学演化机制,且最优变换域回波分形特征可以有效用于飞机目标的分类和识别。