首页>
根据【关键词:情绪识别,CBAM,Conv,YOLOv7,Ghost,目标检测】搜索到相关结果 199 条
-
基于多分辨率遥感影像的飞机检测研究
-
作者:
侯宇青阳
全吉成
魏湧明
来源:
激光与光电子学进展
年份:
2018
文献类型 :
期刊
关键词:
显著性提取
遥感影像
目标检测
深度学习
-
描述:
结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行
-
基于改进候选区域网络的红外飞机检测
-
作者:
姜晓伟
王春平
付强
来源:
激光与红外
年份:
2019
文献类型 :
期刊
关键词:
聚类
红外飞机
卷积神经网络
目标检测
-
描述:
为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
-
基于军事飞机图像结合FCN的目标检测技术应用
-
作者:
张春雷
来源:
电子测试
年份:
2019
文献类型 :
期刊
关键词:
特征提取
全卷积神经网络
目标检测
-
描述:
图像分割是图像识别和目标检测的重要工作,军事图像目标检测与准确分割是分析军事目标的核心工作。针对这一工作,本文将全卷积神经网络(全卷积神经网络)应用在军事飞机图像的目标获取上,通过全卷积神经网络强大的特征提取和识别能力,准确获取目标区域,对分析图像信息提供参考性意义。
-
基于军事飞机图像结合FCN的目标检测技术应用
-
作者:
张春雷
来源:
电子测试
年份:
2019
文献类型 :
期刊
关键词:
特征提取
全卷积神经网络
目标检测
-
描述:
图像分割是图像识别和目标检测的重要工作,军事图像目标检测与准确分割是分析军事目标的核心工作。针对这一工作,本文将全卷积神经网络(全卷积神经网络)应用在军事飞机图像的目标获取上,通过全卷积神经网络强大的特征提取和识别能力,准确获取目标区域,对分析图像信息提供参考性意义。
-
基于半监督学习的遥感飞机图像检测方法
-
作者:
杜泽星
殷进勇
杨建
来源:
激光与光电子学进展
年份:
2019
文献类型 :
期刊
关键词:
遥感图像
目标检测
半监督学习
生成式对抗网络
-
描述:
目标的边缘特征信息和深层语义特征。通过结合两种粒度的生成式对抗网络的判别器网络模型,设计了目标检测网络模型。实验结果表明,本文所设计的这种半监督学习训练方法有着更快的收敛速度,并且在训练时需要的标记样本更少。
-
-
作者:
周文骏
黄硕
张宁
宋传龙
赵宇轩
段一帆
徐国庆
来源:
光学精密工程
年份:
2024
文献类型 :
期刊
关键词:
注意力机制
目标检测
DETR网络
SAR图像
-
描述:
-
基于改进YOLOv4算法的遥感图像飞机目标检测
-
作者:
王惠中
文学
来源:
计算机与数字工程
年份:
2024
文献类型 :
期刊
关键词:
遥感图像
特征融合
目标检测
YOLOv4
-
描述:
针对在遥感图像上对飞机目标检测的精度低问题,论文通过对PANet特征融合网络结构的加深使得YOLOv4算法对小目标的检测更加敏感,进而提高算法的平均检测精度;另外,利用K-means++算法产生
-
基于改进YOLOv8的遥感图像飞机目标检测研究
-
作者:
张德银
赵志恒
谢逸戈
黄少晗
来源:
自动化应用
年份:
2024
文献类型 :
期刊
关键词:
遥感图像
目标检测
飞机目标
YOLOv8算法
-
描述:
为解决遥感图像飞机目标检测时易出现检测精度低与漏检误检等问题,提出了一种基于YOLOv8算法的遥感图像飞机目标检测改进算法。首先,将坐标注意力机制模块嵌入卷积模块中,使其能提取复杂背景下的飞机小目标
-
SAR图像飞机检测技术研究
-
作者:
王鑫辉
来源:
上海交通大学
年份:
2020
文献类型 :
学位论文
关键词:
特征提取
机器学习
SAR
目标检测
-
描述:
SAR图像飞机检测技术研究
-
基于关键点的飞机表面伤痕检测及后处理算法研究
-
作者:
李婉婷
来源:
北京邮电大学
年份:
2021
文献类型 :
学位论文
关键词:
目标检测
非极小值反馈
关键点
飞机表面伤痕
-
描述:
基于关键点的飞机表面伤痕检测及后处理算法研究
<
1
2
3
4
5
...
18
19
20
>