首页>
根据【关键词:多方法融合,航空发动机,随机森林,本机平衡】搜索到相关结果 2708 条
-
基于随机森林的航空发动机工作状态识别
-
作者:
李鼎哲
彭靖波
赵泽平
王玮轩
赵彪
来源:
空军工程大学学报(自然科学版)
年份:
2020
文献类型 :
期刊
关键词:
工作状态识别
主成分分析
航空发动机
随机森林
属性约简
飞参数据
-
描述:
为解决人工识别航空发动机工作状态中存在的误判和耗时费力等问题,提高识别准确率,提出了一种基于主成分分析(PCA)的特征提取方法和随机森林(RF)的智能识别方法。首先对飞参数据进行预处理,利用PCA将
-
调频广播带宽对民航甚高频通信的影响分析
-
作者:
王淑玲
谢凤
朱倩倩
来源:
黑龙江大学自然科学学报
年份:
2018
文献类型 :
期刊
关键词:
异常点
随机森林
强影响点
燃油消耗
-
描述:
为确定燃油消耗数据中可能存在的异常点及强影响点,运用随机森林算法,对预处理后的某场站近三年燃料油消耗数据建模;对回归模型分别做残差分析和影响分析,不仅从残差图中观察出偏离既定模型很大的数据点,还仿照
-
调频广播带宽对民航甚高频通信的影响分析
-
作者:
王淑玲
谢凤
朱倩倩
来源:
黑龙江大学自然科学学报
年份:
2018
文献类型 :
期刊
关键词:
异常点
随机森林
强影响点
燃油消耗
-
描述:
为确定燃油消耗数据中可能存在的异常点及强影响点,运用随机森林算法,对预处理后的某场站近三年燃料油消耗数据建模;对回归模型分别做残差分析和影响分析,不仅从残差图中观察出偏离既定模型很大的数据点,还仿照
-
基于维修日志的飞机设备故障原因判别方法
-
作者:
王锐光
吴际
刘超
杨海燕
来源:
软件学报
年份:
2019
文献类型 :
期刊
关键词:
维修日志
卷积神经网络
故障诊断
随机森林
-
描述:
的情况下,利用预测目标将字向量作为输入,得到更为充分的文本特征;最后,使用随机森林(randomforest,简称RF)模型,结合其他故障特征判别飞机设备的故障原因.卷积神经网络以故障原因为目标,预先
-
基于维修日志的飞机设备故障原因判别方法
-
作者:
王锐光
吴际
刘超
杨海燕
来源:
软件学报
年份:
2019
文献类型 :
期刊
关键词:
维修日志
卷积神经网络
故障诊断
随机森林
-
描述:
的情况下,利用预测目标将字向量作为输入,得到更为充分的文本特征;最后,使用随机森林(randomforest,简称RF)模型,结合其他故障特征判别飞机设备的故障原因.卷积神经网络以故障原因为目标,预先
-
基于自适应粒子群优化的不平衡航空客户数据质量优化
-
作者:
姚雨虹
杨小兵
陈欣
来源:
厦门大学学报(自然科学版)
年份:
2020
文献类型 :
期刊
关键词:
自适应粒子群
卷积神经网络
忠诚度预测
随机森林
-
描述:
多数类优化样本子集,使用卷积神经网络(CNN)提取得到的平衡数据集特征,将自动得到的特征向量作为随机森林算法(RF)的输入,构建客户忠诚度预测模型。实验结果表明,本文方法预测性能优于其他预测模型,可以更好地预测客户忠诚度情况。
-
基于维修日志的飞机设备故障原因判别方法
-
作者:
王锐光
吴际
刘超
杨海燕
来源:
软件学报
年份:
2019
文献类型 :
期刊
关键词:
维修日志
卷积神经网络
故障诊断
随机森林
-
描述:
的情况下,利用预测目标将字向量作为输入,得到更为充分的文本特征;最后,使用随机森林(randomforest,简称RF)模型,结合其他故障特征判别飞机设备的故障原因.卷积神经网络以故障原因为目标,预先
-
基于维修日志的飞机设备故障原因判别方法
-
作者:
王锐光
吴际
刘超
杨海燕
来源:
软件学报
年份:
2019
文献类型 :
期刊
关键词:
维修日志
卷积神经网络
故障诊断
随机森林
-
描述:
的情况下,利用预测目标将字向量作为输入,得到更为充分的文本特征;最后,使用随机森林(randomforest,简称RF)模型,结合其他故障特征判别飞机设备的故障原因.卷积神经网络以故障原因为目标,预先
-
基于自适应粒子群优化的不平衡航空客户数据质量优化
-
作者:
姚雨虹
杨小兵
陈欣
来源:
厦门大学学报(自然科学版)
年份:
2020
文献类型 :
期刊
关键词:
自适应粒子群
卷积神经网络
忠诚度预测
随机森林
-
描述:
多数类优化样本子集,使用卷积神经网络(CNN)提取得到的平衡数据集特征,将自动得到的特征向量作为随机森林算法(RF)的输入,构建客户忠诚度预测模型。实验结果表明,本文方法预测性能优于其他预测模型,可以更好地预测客户忠诚度情况。
-
基于机器学习的航空器进近飞行时间预测
-
作者:
叶博嘉
鲍序
刘博
田勇
来源:
航空学报
年份:
2021
文献类型 :
期刊
关键词:
空中交通管理
机器学习
特征重要度
随机森林
进近飞行时间预测
-
描述:
空域飞行的8类因素和17个重要特征。以航空器在进近飞行时间为标签,基于提出的重要特征,采用岭回归、支持向量机、随机森林和神经网络算法,建立了4种基于机器学习的航空器进近飞行时间预测模型。以南京进近为实例