关键词
基于改进候选区域网络的红外飞机检测
作者: 姜晓伟   王春平   付强   来源: 激光与红外 年份: 2019 文献类型 : 期刊 关键词: 聚类   红外飞机   卷积神经网络   目标检测  
描述: 为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
基于改进候选区域网络的红外飞机检测
作者: 姜晓伟   王春平   付强   来源: 激光与红外 年份: 2019 文献类型 : 期刊 关键词: 聚类   红外飞机   卷积神经网络   目标检测  
描述: 为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
卷积神经网络及其在航空视觉任务中的应用展望
作者: 漆昇翔   裘旭益   张伟   来源: 航空电子技术 年份: 2019 文献类型 : 期刊 关键词: 卷积神经网络   计算机视觉   深度学习   航空航天  
描述:卷积神经网络的基本理论出发,介绍了几种经典卷积网络结构,并结合当前卷积神经网络在计算机视觉领域的应用现状,重点探讨了它在未来航空视觉相关任务系统中的应用前景,以及实施这些技术必须解决的若干问题,为未来航空装备智能化水平的进一步提升提供参考。
基于卷积神经网络迁移学习的飞机目标识别
作者: 杨予昊   孙晶明   虞盛康   来源: 现代雷达 年份: 2020 文献类型 : 期刊 关键词: 小样本   卷积神经网络   飞机目标识别   迁移学习  
描述: 基于卷积神经网络迁移学习的飞机目标识别
基于卷积神经网络的航空影像城市建筑物分割
作者: 刘蝶   来源: 地理空间信息 年份: 2020 文献类型 : 期刊 关键词: 建筑物   卷积神经网络   DenseNets   上采样  
描述: 对航空影像城市建筑物的分割方法进行了研究。基于DenseNets的密集连接结构,结合池化下采样和反卷积上采样方法,提出了一种新的图像语义分割方法。实验结果表明,新方法在模型参数大小、训练时间和平均交并比方面均优于Unet。预测图像更直观地体现了新方法的优势,城市建筑物分割得较为完整。
基于自适应粒子群优化的不平衡航空客户数据质量优化
作者: 姚雨虹   杨小兵   陈欣   来源: 厦门大学学报(自然科学版) 年份: 2020 文献类型 : 期刊 关键词: 自适应粒子群   卷积神经网络   忠诚度预测   随机森林  
描述: 多数类优化样本子集,使用卷积神经网络(CNN)提取得到的平衡数据集特征,将自动得到的特征向量作为随机森林算法(RF)的输入,构建客户忠诚度预测模型。实验结果表明,本文方法预测性能优于其他预测模型,可以更好地预测客户忠诚度情况。
基于卷积神经网络的遥感图像飞机目标识别
作者: 晁安娜   刘坤   来源: 微型机与应用 年份: 2018 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   飞机识别   深度学习  
描述: 遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用
航空轮胎有限元分析
作者: 刘坤   苏彤   王典   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   模糊不变   目标识别  
描述: 由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural
卷积神经网络及其在航空视觉任务中的应用展望
作者: 漆昇翔   裘旭益   张伟   来源: 航空电子技术 年份: 2019 文献类型 : 期刊 关键词: 卷积神经网络   计算机视觉   深度学习   航空航天  
描述:卷积神经网络的基本理论出发,介绍了几种经典卷积网络结构,并结合当前卷积神经网络在计算机视觉领域的应用现状,重点探讨了它在未来航空视觉相关任务系统中的应用前景,以及实施这些技术必须解决的若干问题,为未来航空装备智能化水平的进一步提升提供参考。
基于卷积神经网络迁移学习的飞机目标识别
作者: 杨予昊   孙晶明   虞盛康   来源: 现代雷达 年份: 2020 文献类型 : 期刊 关键词: 小样本   卷积神经网络   飞机目标识别   迁移学习  
描述: 基于卷积神经网络迁移学习的飞机目标识别
< 1 2 3 4 5 6 ... 45 46 47
Rss订阅