按文献类别分组
按栏目分组
关键词
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
面向航空目标检测的神经网络加速器设计
作者: 施立瑞   王帅帅   肖昊   来源: 航空科学技术 年份: 2022 文献类型 : 期刊 关键词: 卷积神经网络   FPGA   目标检测   Winograd算法   加速器  
描述: 卷积神经网络被广泛应用于航空图像目标检测领域。然而,由于航空图像成像背景环境复杂、目标尺寸小且方向任意,为了提取更高层次的特征信息,神经网络模型的结构复杂度不断提高,使得模型计算复杂度高、计算时间长,从而难以满足航空目标检测的实时性需求。本文提出了一种面向航空目标检测的基于Winograd算法的神经网络加速器,通过Winograd卷积算法可大幅减少卷积计算中的乘法数量,并针对Winograd卷积在神经网络计算中由于时域变换引入额外加法计算的问题,提出了一种深流水的矩阵变换计算结构,通过复用加法计算的中间结果以及调整运算顺序减少输入和输出变换的计算量。同时,针对加速器的现场可编程门阵列(FPGA)实现,提出了一种高效的数据流形式和DSP阵列结构。试验结果表明,本文提出的加速器相比CPU和GPU分别获得了32倍和2.6倍的速度提升。
基于剪枝和去噪的航空发动机故障图像识别与预测
作者: 傅荣春雪   刘君强   冯潇楠   余卓倩   来源: 航空计算技术 年份: 2023 文献类型 : 期刊 关键词: YOLO   图像去噪   目标检测   孔探图像   剪枝算法  
描述: 航空发动机叶片作为航空器重要的零件,其健康状况直接关系到航班的运行安全。叶片由于工作环境恶劣很容易产生裂纹、掉块、烧灼等损伤,目前基于孔探技术的叶片损伤检测以人工为主,检测结果在很大程度上受到人为因素的影响。因此,实现叶片损伤的自动识别及测量对于减轻劳动强度和提高检测精度都有实际的应用价值。首先选择PRIDnet图像去噪算法对原始孔探图像进行预处理,按照训练精度和训练速度两个指标对传统目标检测模型进行通道剪枝和微调。数据集采用国内某航空公司获取到CFM56型发动机在实际运营后机务人员所拍摄的孔探图像,实验结果表明,相比于原始目标检测YOLOv5算法和未经图像预处理的目标检测模型,本方法对航空发动机孔探图像内损伤的检测精度提高4%~10%,在检测效率上提高6%~20%。
基于多视影像匹配模型的倾斜航空影像自动连接点提取及区域网平差方法
作者: 张力   艾海滨   许彪   孙钰珊   董友强   来源: 测绘学报 年份: 2017 文献类型 : 期刊 关键词: 特征提取   光束法最小二乘平差   倾斜航空摄影   多视影像匹配   仿射不变性特征提取算子  
描述: 自动可靠地获取精确且均匀分布的连接点并进行区域网平差解算,是使用倾斜航空影像进行高精度测绘、三维信息提取和三维城市模型构建等应用的前提。本文提出了一种实用化的大重叠率倾斜航空影像的全自动连接点匹配和联合区域网平差方法。一方面,针对倾斜航空影像因遮挡严重、尺度变化大和几何变形严重而引起的同名点匹配困难问题,充分利用POS数据和平均飞行高度等初始数据,同时顾及这些数据的误差,通过有效组合一种改进的ASIFT算法和基于窗口的多角度多视影像匹配模型(WMVM),使用由粗到细的多分辨率分层匹配策略完成连接点的全自动提取;另一方面,在传统的最小二乘光束法平差的基础上,根据倾斜航空影像数据的特点,提出了基于稳健估值原理的粗差自动探测与剔除关键算法。最后,利用多组典型试验区域的倾斜航空影像数据试验结果验证了所提算法的可靠性、精度和实际性能。
一种基于时频分析的窄带雷达飞机目标分类特征提取方法
作者: 赵越   陈之纯   纠博   张磊   刘宏伟   李真芳   来源: 电子与信息学报 年份: 2017 文献类型 : 期刊 关键词: 特征提取   时频分析   熵值   低信噪比   目标分类  
描述: 针对低信噪比情况下窄带雷达目标分类问题,该文提出基于时频分析的窄带雷达飞机目标分类特征提取方法。该方法利用喷气式飞机、螺旋桨飞机和直升机3类目标调制周期的差异,提取时频谱域的熵值变化特性,并给出时频
基于k最近邻的激光雷达飞机尾涡识别
作者: 潘卫军   吴郑源   张晓磊   来源: 激光技术 年份: 2019 文献类型 : 期刊 关键词: 激光技术   特征提取   尾涡识别   K最近邻   多普勒激光雷达  
描述: 为对脉冲多普勒激光雷达探测径向速度场进行识别,建立了基于k最近邻(KNN)方法的分类模型。本文首先结合飞机尾涡Hallock-Burnham模型和脉冲多普勒激光雷达特性,提取脉冲多普勒激光雷达探测径向速度场的特征参数。基于现有测试数据,在非均匀背景风场下利用KNN方法对飞机尾涡进行识别。以准确率(ACC)和ROC曲线下的面积(AUC)作为评估标准,本文所提出的方法对尾流识别所获得的ACC和AUC分别为0.772和0.855。实验结果表明,该方法可有效地识别飞机尾涡并具备较好的鲁棒性。
基于RBM-BPNN的民航潜在高价值旅客预测
作者: 徐涛   刘泽君   卢敏   来源: 计算机应用与软件 年份: 2019 文献类型 : 期刊 关键词: BPNN   特征提取   分类预测模型   民航潜在高价值旅客   RBM  
描述: 目前常用潜在客户发现方法多为基于统计特征的行为分析方法,这种方法对所提取的特征具有很强的依赖性并且容易受到人为主观性影响。针对这一问题,结合受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)与BP神经网络(Back Propagation Neural Network, BPNN),提出基于RBM-BPNN的民航潜在高价值旅客发现方法。设置民航旅客类别标签;利用RBM自动提取旅客行为特征;利用BPNN对旅客未来价值类型进行分类预测,从而发现民航潜在高价值旅客。实验结果表明,相对于基于统计特征的行为分析方法,该方法具有更高的分类预测准确率和民航潜在高价值旅客预测效果。
航空滚动轴承振动特征的故障灵敏度分析与融合技术
作者: 林桐   陈果   张全德   王洪伟   陈立波   来源: 航空动力学报 年份: 2018 文献类型 : 期刊 关键词: 特征提取   灵敏度分析   滚动轴承   特征融合   状态评估  
描述: 针对工程中航空滚动轴承实时状态监测的需要,提出了基于标准化欧氏距离的多特征融合评估方法。首先,进行了航空滚动轴承故障模拟试验,引入了故障灵敏度的定量评价指标,对融合前后特征的故障灵敏度进行了分析;在此基础上,将所提方法与主分量分析、支持向量数据描述和支持向量分布估计方法相比较;最后,进行了轴承疲劳加速试验,将所提融合方法应用于航空滚动轴承状态监测。试验表明:相比于主分量分析、支持向量数据描述和支持向量分布估计,基于标准化欧氏距离的融合值的故障灵敏度更高;其对不同类型、不同阶段的航空滚动轴承故障更加灵敏,相比于有效值更适合作为航空滚动轴承状态监测的指标。
分数阶Fourier域低分辨雷达飞机回波的分形特性分析与目标分类
作者: 李秋生   谢晓春   朱红   吴倩媛   来源: 计算机应用研究 年份: 2018 文献类型 : 期刊 关键词: 特征提取   低分辨雷达   分形   分数阶Fourier变换   目标分类  
描述: 常规低分辨雷达体制下的目标分类与辨识是雷达目标识别领域的一个研究难点。研究表明,地、海、空等雷达杂波具有分形特性,不同类型目标会对回波分形特性产生不同的影响,但在强杂波背景下,回波的分形特性更多地表现为杂波的特性。作为一种非平稳信号分析工具,分数阶Fourier变换可以有效地获取目标回波信号的细节特征并充分抑制杂波,且具有快速算法。为此,立足于分形及其相关理论,拟从分数阶Fourier域对常规雷达飞机目标回波的分形特性进行分析,估计和分析其分形参数,并对分数阶Fourier域回波分形特征在飞机目标分类中的应用进行探讨。研究结果表明,在最优变换阶数下,分数阶Fourier域飞机目标回波具有显著的分形特性,且充分反映了目标的特性,分形测度分析可以揭示回波的动力学演化机制,且最优变换域回波分形特征可以有效用于飞机目标的分类和识别。
基于深度信念网络的航空发动机维修等级决策
作者: 车畅畅   王华伟   刘伟   来源: 航空动力学报 年份: 2018 文献类型 : 期刊 关键词: 运行安全   特征提取   维修等级决策   深度信念网络   状态监控  
描述: 等级数据作为实例进行验证,结果显示:该模型能够通过构建多层网络结构挖掘出样本的更深层次信息,在分类能力、决策准确性方面优于传统神经网络,有较强的特征提取能力,对维修等级分类有较高的正确率,能得出更准确的维修等级决策结果,避免因维修等级误判而带来不必要的损失。
< 1 2 3 4 5 6
Rss订阅