按文献类别分组
按栏目分组
关键词
基于深度学习的航空发动机齿轮故障诊断
作者: 万安平   杨洁   王景霖   陈挺   缪徐   黄佳湧   杜翔   来源: 振动.测试与诊断 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   多传感器信息融合   故障诊断   深度学习  
描述: dimensional convolutional neural network,简称1D-CNN)对试验获取的某航空发动机的齿轮故障振动数据进行特征提取与分类,建立齿轮故障一维卷积神经网络模型,对航空发动机轴承进行
面向航空目标检测的神经网络加速器设计
作者: 施立瑞   王帅帅   肖昊   来源: 航空科学技术 年份: 2022 文献类型 : 期刊 关键词: 卷积神经网络   FPGA   目标检测   Winograd算法   加速器  
描述: 卷积神经网络被广泛应用于航空图像目标检测领域。然而,由于航空图像成像背景环境复杂、目标尺寸小且方向任意,为了提取更高层次的特征信息,神经网络模型的结构复杂度不断提高,使得模型计算复杂度高、计算时间长
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
作者: 杨洁   万安平   王景霖   单添敏   缪徐   李客   左强   来源: 中国电机工程学报 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   多传感器信息融合   故障诊断   深度学习  
描述: 航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
作者: 杨洁   万安平   王景霖   单添敏   缪徐   李客   左强   来源: 中国电机工程学报 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   多传感器信息融合   故障诊断   深度学习  
描述: 航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障
基于字符与单词嵌入的航空安全命名实体识别
作者: 孙安亮   时宏伟   王金策   来源: 计算机技术与发展 年份: 2022 文献类型 : 期刊 关键词: 卷积神经网络   条件随机场   命名实体识别   双向长短期记忆网络   航空安全  
描述: 航空安全命名实体识别是构建航空安全知识图谱中基础且关键的任务,对消除航空隐患,制定有效的纠正措施和宏观政策提供了重要依据。针对航空安全领域包含大量较长的专有名词和名词缩写混合等问题,采用双向长短
基于差分隐私的航空发动机喘振故障检测
作者: 岑鹏   郑德生   陆超   来源: 燃气涡轮试验与研究 年份: 2022 文献类型 : 期刊 关键词: 差分隐私   航空发动机   卷积神经网络   故障检测   喘振  
描述: 为保护航空发动机数据集包含的众多敏感数据,将差分隐私技术融入卷积神经网络中,提出一种具有差分隐私的卷积神经网络故障检测模型(DP-CNN模型)。阐述了卷积神经网络和差分隐私技术的基本理论和计算步骤
飞机重着陆预警分析方法
作者: 郑磊   池宏   许保光   邵雪焱   来源: 数学的实践与认识 年份: 2019 文献类型 : 期刊 关键词: 重着陆   卷积神经网络   操作模式   预警分析   多元时间序列  
描述: 飞机着陆垂直载荷大(重着陆)是严重的安全事件,轻则对机身结构造成伤害,严重时可能导致机毁人亡.从快速存取记录器(Quick Access Recorder, QAR)记录的飞行参数数据中挖掘规律并提前预警,对飞行安全意义重大.首先使用基于动态时间规整距离的时间序列聚类分析来确定飞行操作模式,然后研究在已知和未知飞行操作模式的情况下,重着陆预警分析的效果.对比试验表明,已知飞行操作模式的情况下,重着陆预警的召回率指标较好,可以发现更多的重着陆事件,提高安全性.
GLT-CNN方法及其在航空发动机中介轴承故障诊断中的应用
作者: 王奉涛   薛宇航   王洪涛   马琳杰   李宏坤   韩清凯   于晓光   来源: 振动工程学报 年份: 2020 文献类型 : 期刊 关键词: 卷积神经网络   故障诊断   优化算法   灰度变换   轴承  
描述: GLT-CNN方法及其在航空发动机中介轴承故障诊断中的应用
基于卷积神经网络的遥感图像飞机检测
作者: 张义德   胡长雨   胡春育   来源: 光电子技术 年份: 2017 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   微调   迁移学习   飞机检测  
描述: 提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集的深度特征,训练可变形部件检测模型。实验表明,提出的方法大大提高了遥感图像飞机目标检测精度,准确率达96%以上。
基于多结构卷积神经网络的高分遥感影像飞机目标检测
作者: 姚相坤   万里红   霍宏   方涛   来源: 计算机工程 年份: 2017 文献类型 : 期刊 关键词: 特征提取   卷积神经网络   多结构网络   目标检测   高分遥感影像  
描述: 传统的遥感影像目标检测方法大多利用人工提取特征,难以用于背景复杂的高分辨率遥感影像。针对该问题,构建一种多结构卷积神经网络模型(MSCNN)自动学习目标特征。通过改变卷积滤波器尺寸、数量以及网络层数
< 1 2 3 ... 10 11 12 13 14
Rss订阅