首页>
根据【关键词:注意力机制,合成孔径雷达(SAR),特征融合,飞机检测】搜索到相关结果 112 条
-
-
作者:
王善求
李春梅
谷佳澄
谭佳伟
来源:
长春工程学院学报(自然科学版)
年份:
2024
文献类型 :
期刊
关键词:
注意力机制
时间卷积网络
寿命预测
粒子群算法
超参数优化
-
描述:
-
-
作者:
殷萌暄
胡明华
尹嘉男
乔沛然
姚梦芸
来源:
航空计算技术
年份:
2024
文献类型 :
期刊
关键词:
注意力机制
特征提取
机场场面
滑行轨迹预测
自然语言处理
-
描述:
-
卫星信号丢失下航空器多阶段高度预测
-
作者:
黄梦婵
苗强
来源:
工程科学与技术
年份:
2024
文献类型 :
期刊
关键词:
时域卷积神经网络
注意力机制
高度预测
卫星信号
航空器
-
描述:
针对卫星信号丢失下航空器高度指示值不准确的问题,提出一种基于注意力机制和时域卷积神经网络的航空器多阶段高度预测算法(LTCA–TCN)。首先,采用模糊逻辑将航空器的整段飞行过程划分为不同阶段,提供
-
空时模型融合自注意力机制的航空管路故障诊断新方法
-
作者:
杨同光
袁晟友
周献文
韩清凯
于晓光
来源:
振动与冲击
年份:
2024
文献类型 :
期刊
关键词:
注意力机制
故障诊断
航空管路
空时融合
轻量化
-
描述:
,设计轻量化管路时间特征提取模块,从细粒度特征中继续融合管路粗粒度特征,实现粗细粒度特征融合;此外在空时模型中融合自注意力机制进行优化,使得最后的决策更加的聚焦,进一步提高所提模型的诊断精度。基于同一
-
一种基于级联神经网络的飞机检测方法
-
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
-
描述:
了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
-
一种基于级联神经网络的飞机检测方法
-
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
-
描述:
了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
-
基于改进Faster R-CNN的SAR图像飞机检测算法
-
作者:
李广帅
苏娟
李义红
来源:
北京航空航天大学学报
年份:
2020
文献类型 :
期刊
关键词:
R
CNN
上下文信息
Align
浅层特征增强
Faster
飞机检测
ROI
-
描述:
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差
-
基于改进Faster R-CNN的SAR图像飞机检测算法
-
作者:
李广帅
苏娟
李义红
来源:
北京航空航天大学学报
年份:
2020
文献类型 :
期刊
关键词:
R
CNN
上下文信息
Align
浅层特征增强
Faster
飞机检测
ROI
-
描述:
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差
-
基于两阶段迁移学习的Multi-scale SE-ResNet50深度卷积神经网络的多标签航空图像分类问题研究
-
作者:
刘乙萱
苏鑫
来源:
数学的实践与认识
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
ResNet50
航空图像分类
多标签
多尺度特征融合
迁移学习
-
描述:
ResNet50为核心的深度卷积特征提取网络.通过设计多尺度特征提取模块,增强模型对特征的细化能力;采取SENet与ResNet残差模块进行级联的方式在模型中嵌入通道注意力机制,强化对特征图中关键通道信息
-
航空机载红外图像的车辆目标自主检测识别
-
作者:
杨雪
修吉宏
刘小嘉
罗宁
来源:
激光与红外
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
RFBs
YOLOv5
目标检测
红外图像
BiFPN
-
描述:
添加CBAM注意力机制以提升检测精度。实验结果表明:在DroneVehicle数据集上的检测效果要优于原始网络,精确率(Precision)提升2.8%,召回率(Recall)提升16%,平均精度(mAP)提升2.3%。结论:可有效应用于航空红外图像的车辆自主检测识别。