按文献类别分组
按栏目分组
关键词
基于Trans/Attention的飞行区航空器监视数据融合方法
作者: 王兴隆   尹昊   丁俊峰   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 场面监视雷达   注意力机制   Transformer   数据融合   广播式自动相关监视  
描述: 结果表明,该方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.20%、14.32%和33.94%。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU
作者: 王善求     李春梅     谷佳澄     谭佳伟   来源: 长春工程学院学报(自然科学版) 年份: 2024 文献类型 : 期刊 关键词: 注意力机制   时间卷积网络   寿命预测   粒子群算法   超参数优化  
描述:
作者: 殷萌暄     胡明华     尹嘉男     乔沛然     姚梦芸   来源: 航空计算技术 年份: 2024 文献类型 : 期刊 关键词: 注意力机制   特征提取   机场场面   滑行轨迹预测   自然语言处理  
描述:
卫星信号丢失下航空器多阶段高度预测
作者: 黄梦婵     苗强   来源: 工程科学与技术 年份: 2024 文献类型 : 期刊 关键词: 时域卷积神经网络   注意力机制   高度预测   卫星信号   航空器  
描述: 针对卫星信号丢失下航空器高度指示值不准确的问题,提出一种基于注意力机制和时域卷积神经网络的航空器多阶段高度预测算法(LTCA–TCN)。首先,采用模糊逻辑将航空器的整段飞行过程划分为不同阶段,提供
空时模型融合自注意力机制的航空管路故障诊断新方法
作者: 杨同光     袁晟友     周献文     韩清凯     于晓光   来源: 振动与冲击 年份: 2024 文献类型 : 期刊 关键词: 注意力机制   故障诊断   航空管路   空时融合   轻量化  
描述: ,设计轻量化管路时间特征提取模块,从细粒度特征中继续融合管路粗粒度特征,实现粗细粒度特征融合;此外在空时模型中融合自注意力机制进行优化,使得最后的决策更加的聚焦,进一步提高所提模型的诊断精度。基于同一
一种基于TCN-LGBM的航空发动机气路故障诊断方法
作者: 吕卫民   孙晨峰   任立坤   赵杰   李永强   来源: 兵工学报 年份: 2023 文献类型 : 期刊 关键词: 轻量级梯度提升机   注意力机制   航空发动机   故障诊断   时间卷积神经网络  
描述: )和轻量级梯度提升机(LGBM)的航空发动机气路故障诊断方法。故障诊断分为故障特征提取和分类诊断两个过程:引入TCN框架在保证故障数据训练时序逻辑的基础上,实现对远层历史信息和当前层信息的特征融合构建
基于改进YOLOv5的航空发动机表面缺陷检测模型
作者: 李鑫   李香蓉   汪诚   李秋良   李卓越   来源: 激光与光电子学进展 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   机器视觉   YOLOv5   表面缺陷检测  
描述: 训练效果的提升;其次在Backbone网络中引入坐标注意力机制,在通道注意力的基础上嵌入坐标信息,提高对小缺陷目标的检测能力;最后将YOLOv5的定位损失函数改进为EIoU loss,在加快模型收敛
基于Trans/Attention的飞行区航空器监视数据融合方法
作者: 王兴隆   尹昊   丁俊峰   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 场面监视雷达   注意力机制   Transformer   数据融合   广播式自动相关监视  
描述: 结果表明,该方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.20%、14.32%和33.94%。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU
< 1 2 3 ... 9 10 11 12
Rss订阅