-
基于改进YOLOv5的航空发动机表面缺陷检测模型
-
作者:
李鑫
李香蓉
汪诚
李秋良
李卓越
来源:
激光与光电子学进展
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
机器视觉
YOLOv5
表面缺陷检测
-
描述:
针对目前航空发动机表面人工缺陷检测效率低的问题,本文提出了一种基于改进YOLOv5的缺陷检测模型YOLOv5-CE。首先在网络中融合数据增强策略搜索算法,自动为当前数据集搜索最佳的数据增强策略,实现训练效果的提升;其次在Backbone网络中引入坐标注意力机制,在通道注意力的基础上嵌入坐标信息,提高对小缺陷目标的检测能力;最后将YOLOv5的定位损失函数改进为EIoU loss,在加快模型收敛的同时提高预测框回归精度。实验表明,本文提出的YOLOv5-CE模型,相比原YOLOv5s网络,在检测速度几乎没有下降的情况下m AP值提高了1.2%,达到了98.5%,能够实现对航空发动机四种常见类型缺陷的高效智能检测。